Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Structured version   Unicode version

Theorem erngdvlem3-rN 34482
Description: Lemma for erngrng 34476. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r  |-  H  =  ( LHyp `  K
)
ernggrp.d-r  |-  D  =  ( ( EDRingR `  K ) `  W
)
ernggrplem.b-r  |-  B  =  ( Base `  K
)
ernggrplem.t-r  |-  T  =  ( ( LTrn `  K
) `  W )
ernggrplem.e-r  |-  E  =  ( ( TEndo `  K
) `  W )
ernggrplem.p-r  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
ernggrplem.o-r  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
ernggrplem.i-r  |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' ( a `  f ) ) )
erngrnglem.m-r  |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a
) )
Assertion
Ref Expression
erngdvlem3-rN  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Distinct variable groups:    B, f    a, b, E    f, a, K, b    f, H    T, a, b, f    W, a, b, f
Allowed substitution hints:    B( a, b)    D( f, a, b)    P( f, a, b)    E( f)    H( a, b)    I( f, a, b)    M( f, a, b)    O( f, a, b)

Proof of Theorem erngdvlem3-rN
Dummy variables  t 
s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4  |-  H  =  ( LHyp `  K
)
2 ernggrplem.t-r . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 ernggrplem.e-r . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 ernggrp.d-r . . . 4  |-  D  =  ( ( EDRingR `  K ) `  W
)
5 eqid 2438 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
61, 2, 3, 4, 5erngbase-rN 34293 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
76eqcomd 2443 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
8 eqid 2438 . . . 4  |-  ( +g  `  D )  =  ( +g  `  D )
91, 2, 3, 4, 8erngfplus-rN 34294 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  D
)  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) ) )
10 ernggrplem.p-r . . 3  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
119, 10syl6reqr 2489 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  P  =  ( +g  `  D ) )
12 eqid 2438 . . . 4  |-  ( .r
`  D )  =  ( .r `  D
)
131, 2, 3, 4, 12erngfmul-rN 34297 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( .r `  D
)  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a ) ) )
14 erngrnglem.m-r . . 3  |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a
) )
1513, 14syl6reqr 2489 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( .r
`  D ) )
16 ernggrplem.b-r . . 3  |-  B  =  ( Base `  K
)
17 ernggrplem.o-r . . 3  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
18 ernggrplem.i-r . . 3  |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' ( a `  f ) ) )
191, 4, 16, 2, 3, 10, 17, 18erngdvlem1-rN 34480 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
2015oveqd 6103 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M t )  =  ( s ( .r `  D
) t ) )
21203ad2ant1 1009 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  =  ( s ( .r
`  D ) t ) )
221, 2, 3, 4, 12erngmul-rN 34298 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s ( .r
`  D ) t )  =  ( t  o.  s ) )
23223impb 1183 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s
( .r `  D
) t )  =  ( t  o.  s
) )
2421, 23eqtrd 2470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  =  ( t  o.  s
) )
251, 3tendococl 34256 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  s  e.  E
)  ->  ( t  o.  s )  e.  E
)
26253com23 1193 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( t  o.  s )  e.  E
)
2724, 26eqeltrd 2512 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  e.  E )
2815proplem3 14621 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  =  ( t ( .r `  D
) u ) )
291, 2, 3, 4, 12erngmul-rN 34298 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  u  e.  E ) )  -> 
( t ( .r
`  D ) u )  =  ( u  o.  t ) )
30293adantr1 1147 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t ( .r
`  D ) u )  =  ( u  o.  t ) )
3128, 30eqtrd 2470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  =  ( u  o.  t ) )
3231coeq1d 4996 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( t M u )  o.  s
)  =  ( ( u  o.  t )  o.  s ) )
3315oveqd 6103 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M ( t M u ) )  =  ( s ( .r `  D
) ( t M u ) ) )
3433adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t M u ) )  =  ( s ( .r `  D
) ( t M u ) ) )
35 simpl 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
36 simpr1 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
s  e.  E )
37 simpr3 996 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  ->  u  e.  E )
38 simpr2 995 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
t  e.  E )
391, 3tendococl 34256 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E  /\  t  e.  E
)  ->  ( u  o.  t )  e.  E
)
4035, 37, 38, 39syl3anc 1218 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  t
)  e.  E )
4131, 40eqeltrd 2512 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  e.  E )
421, 2, 3, 4, 12erngmul-rN 34298 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t M u )  e.  E ) )  -> 
( s ( .r
`  D ) ( t M u ) )  =  ( ( t M u )  o.  s ) )
4335, 36, 41, 42syl12anc 1216 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) ( t M u ) )  =  ( ( t M u )  o.  s ) )
4434, 43eqtrd 2470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t M u ) )  =  ( ( t M u )  o.  s ) )
4515oveqd 6103 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( s M t ) M u )  =  ( ( s M t ) ( .r `  D
) u ) )
4645adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( ( s M t ) ( .r `  D
) u ) )
47273adant3r3 1198 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  e.  E )
481, 2, 3, 4, 12erngmul-rN 34298 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s M t )  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) ( .r
`  D ) u )  =  ( u  o.  ( s M t ) ) )
4935, 47, 37, 48syl12anc 1216 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) ( .r
`  D ) u )  =  ( u  o.  ( s M t ) ) )
5015proplem3 14621 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  =  ( s ( .r `  D
) t ) )
51223adantr3 1149 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) t )  =  ( t  o.  s ) )
5250, 51eqtrd 2470 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  =  ( t  o.  s ) )
5352coeq2d 4997 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  (
s M t ) )  =  ( u  o.  ( t  o.  s ) ) )
5446, 49, 533eqtrd 2474 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( u  o.  ( t  o.  s ) ) )
55 coass 5351 . . . 4  |-  ( ( u  o.  t )  o.  s )  =  ( u  o.  (
t  o.  s ) )
5654, 55syl6eqr 2488 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( ( u  o.  t )  o.  s ) )
5732, 44, 563eqtr4rd 2481 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( s M ( t M u ) ) )
581, 2, 3, 10tendodi2 34269 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  u  e.  E  /\  s  e.  E ) )  -> 
( ( t P u )  o.  s
)  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
5935, 38, 37, 36, 58syl13anc 1220 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( t P u )  o.  s
)  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
6015oveqd 6103 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M ( t P u ) )  =  ( s ( .r `  D
) ( t P u ) ) )
6160adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( s ( .r `  D
) ( t P u ) ) )
621, 2, 3, 10tendoplcl 34265 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  u  e.  E
)  ->  ( t P u )  e.  E )
6335, 38, 37, 62syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t P u )  e.  E )
641, 2, 3, 4, 12erngmul-rN 34298 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t P u )  e.  E ) )  -> 
( s ( .r
`  D ) ( t P u ) )  =  ( ( t P u )  o.  s ) )
6535, 36, 63, 64syl12anc 1216 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) ( t P u ) )  =  ( ( t P u )  o.  s ) )
6661, 65eqtrd 2470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( ( t P u )  o.  s ) )
6715proplem3 14621 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M u )  =  ( s ( .r `  D
) u ) )
681, 2, 3, 4, 12erngmul-rN 34298 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) u )  =  ( u  o.  s ) )
69683adantr2 1148 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) u )  =  ( u  o.  s ) )
7067, 69eqtrd 2470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M u )  =  ( u  o.  s ) )
7152, 70oveq12d 6104 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) P ( s M u ) )  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
7259, 66, 713eqtr4d 2480 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( ( s M t ) P ( s M u ) ) )
731, 2, 3, 10tendodi1 34268 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  E  /\  s  e.  E  /\  t  e.  E ) )  -> 
( u  o.  (
s P t ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
7435, 37, 36, 38, 73syl13anc 1220 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  (
s P t ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
7515adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  ->  M  =  ( .r `  D ) )
7675oveqd 6103 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( ( s P t ) ( .r `  D
) u ) )
771, 2, 3, 10tendoplcl 34265 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s P t )  e.  E )
78773adant3r3 1198 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s P t )  e.  E )
791, 2, 3, 4, 12erngmul-rN 34298 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s P t )  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) ( .r
`  D ) u )  =  ( u  o.  ( s P t ) ) )
8035, 78, 37, 79syl12anc 1216 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) ( .r
`  D ) u )  =  ( u  o.  ( s P t ) ) )
8176, 80eqtrd 2470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( u  o.  ( s P t ) ) )
8270, 31oveq12d 6104 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M u ) P ( t M u ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
8374, 81, 823eqtr4d 2480 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( ( s M u ) P ( t M u ) ) )
841, 2, 3tendoidcl 34253 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
8515oveqd 6103 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) M s )  =  ( (  _I  |`  T ) ( .r `  D
) s ) )
8685adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) M s )  =  ( (  _I  |`  T ) ( .r `  D
) s ) )
87 simpl 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
8884adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  (  _I  |`  T )  e.  E
)
89 simpr 461 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  s  e.  E )
901, 2, 3, 4, 12erngmul-rN 34298 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  E
) )  ->  (
(  _I  |`  T ) ( .r `  D
) s )  =  ( s  o.  (  _I  |`  T ) ) )
9187, 88, 89, 90syl12anc 1216 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) ( .r `  D ) s )  =  ( s  o.  (  _I  |`  T ) ) )
921, 2, 3tendo1mulr 34255 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s  o.  (  _I  |`  T ) )  =  s )
9386, 91, 923eqtrd 2474 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) M s )  =  s )
9415oveqd 6103 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M (  _I  |`  T )
)  =  ( s ( .r `  D
) (  _I  |`  T ) ) )
9594adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s M (  _I  |`  T ) )  =  ( s ( .r `  D
) (  _I  |`  T ) ) )
961, 2, 3, 4, 12erngmul-rN 34298 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  (  _I  |`  T )  e.  E
) )  ->  (
s ( .r `  D ) (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  s ) )
9787, 89, 88, 96syl12anc 1216 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s
( .r `  D
) (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  s ) )
981, 2, 3tendo1mul 34254 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T )  o.  s )  =  s )
9995, 97, 983eqtrd 2474 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s M (  _I  |`  T ) )  =  s )
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isrngd 16667 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    e. cmpt 4345    _I cid 4626   `'ccnv 4834    |` cres 4837    o. ccom 4839   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   Basecbs 14166   +g cplusg 14230   .rcmulr 14231   Ringcrg 16633   HLchlt 32835   LHypclh 33468   LTrncltrn 33585   TEndoctendo 34236   EDRingRcedring-rN 34238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-riotaBAD 32444
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-undef 6784  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-plusg 14243  df-mulr 14244  df-0g 14372  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-p1 15202  df-lat 15208  df-clat 15270  df-mnd 15407  df-grp 15536  df-mgp 16580  df-rng 16635  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-llines 32982  df-lplanes 32983  df-lvols 32984  df-lines 32985  df-psubsp 32987  df-pmap 32988  df-padd 33280  df-lhyp 33472  df-laut 33473  df-ldil 33588  df-ltrn 33589  df-trl 33643  df-tendo 34239  df-edring-rN 34240
This theorem is referenced by:  erngdvlem4-rN  34483  erngrng-rN  34484
  Copyright terms: Public domain W3C validator