Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Unicode version

Theorem erngdvlem3-rN 31480
Description: Lemma for erngrng 31474. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r  |-  H  =  ( LHyp `  K
)
ernggrp.d-r  |-  D  =  ( ( EDRing R `  K ) `  W
)
ernggrplem.b-r  |-  B  =  ( Base `  K
)
ernggrplem.t-r  |-  T  =  ( ( LTrn `  K
) `  W )
ernggrplem.e-r  |-  E  =  ( ( TEndo `  K
) `  W )
ernggrplem.p-r  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
ernggrplem.o-r  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
ernggrplem.i-r  |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' ( a `  f ) ) )
erngrnglem.m-r  |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a
) )
Assertion
Ref Expression
erngdvlem3-rN  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Distinct variable groups:    B, f    a, b, E    f, a, K, b    f, H    T, a, b, f    W, a, b, f
Allowed substitution hints:    B( a, b)    D( f, a, b)    P( f, a, b)    E( f)    H( a, b)    I( f, a, b)    M( f, a, b)    O( f, a, b)

Proof of Theorem erngdvlem3-rN
Dummy variables  t 
s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4  |-  H  =  ( LHyp `  K
)
2 ernggrplem.t-r . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 ernggrplem.e-r . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 ernggrp.d-r . . . 4  |-  D  =  ( ( EDRing R `  K ) `  W
)
5 eqid 2404 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
61, 2, 3, 4, 5erngbase-rN 31291 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
76eqcomd 2409 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
8 eqid 2404 . . . 4  |-  ( +g  `  D )  =  ( +g  `  D )
91, 2, 3, 4, 8erngfplus-rN 31292 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  D
)  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) ) )
10 ernggrplem.p-r . . 3  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
119, 10syl6reqr 2455 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  P  =  ( +g  `  D ) )
12 eqid 2404 . . . 4  |-  ( .r
`  D )  =  ( .r `  D
)
131, 2, 3, 4, 12erngfmul-rN 31295 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( .r `  D
)  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a ) ) )
14 erngrnglem.m-r . . 3  |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a
) )
1513, 14syl6reqr 2455 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( .r
`  D ) )
16 ernggrplem.b-r . . 3  |-  B  =  ( Base `  K
)
17 ernggrplem.o-r . . 3  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
18 ernggrplem.i-r . . 3  |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' ( a `  f ) ) )
191, 4, 16, 2, 3, 10, 17, 18erngdvlem1-rN 31478 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
2015oveqd 6057 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M t )  =  ( s ( .r `  D
) t ) )
21203ad2ant1 978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  =  ( s ( .r
`  D ) t ) )
221, 2, 3, 4, 12erngmul-rN 31296 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s ( .r
`  D ) t )  =  ( t  o.  s ) )
23223impb 1149 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s
( .r `  D
) t )  =  ( t  o.  s
) )
2421, 23eqtrd 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  =  ( t  o.  s
) )
251, 3tendococl 31254 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  s  e.  E
)  ->  ( t  o.  s )  e.  E
)
26253com23 1159 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( t  o.  s )  e.  E
)
2724, 26eqeltrd 2478 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  e.  E )
2815proplem3 13871 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  =  ( t ( .r `  D
) u ) )
291, 2, 3, 4, 12erngmul-rN 31296 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  u  e.  E ) )  -> 
( t ( .r
`  D ) u )  =  ( u  o.  t ) )
30293adantr1 1116 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t ( .r
`  D ) u )  =  ( u  o.  t ) )
3128, 30eqtrd 2436 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  =  ( u  o.  t ) )
3231coeq1d 4993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( t M u )  o.  s
)  =  ( ( u  o.  t )  o.  s ) )
3315oveqd 6057 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M ( t M u ) )  =  ( s ( .r `  D
) ( t M u ) ) )
3433adantr 452 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t M u ) )  =  ( s ( .r `  D
) ( t M u ) ) )
35 simpl 444 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
36 simpr1 963 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
s  e.  E )
37 simpr3 965 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  ->  u  e.  E )
38 simpr2 964 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
t  e.  E )
391, 3tendococl 31254 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E  /\  t  e.  E
)  ->  ( u  o.  t )  e.  E
)
4035, 37, 38, 39syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  t
)  e.  E )
4131, 40eqeltrd 2478 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  e.  E )
421, 2, 3, 4, 12erngmul-rN 31296 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t M u )  e.  E ) )  -> 
( s ( .r
`  D ) ( t M u ) )  =  ( ( t M u )  o.  s ) )
4335, 36, 41, 42syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) ( t M u ) )  =  ( ( t M u )  o.  s ) )
4434, 43eqtrd 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t M u ) )  =  ( ( t M u )  o.  s ) )
4515oveqd 6057 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( s M t ) M u )  =  ( ( s M t ) ( .r `  D
) u ) )
4645adantr 452 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( ( s M t ) ( .r `  D
) u ) )
47273adant3r3 1164 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  e.  E )
481, 2, 3, 4, 12erngmul-rN 31296 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s M t )  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) ( .r
`  D ) u )  =  ( u  o.  ( s M t ) ) )
4935, 47, 37, 48syl12anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) ( .r
`  D ) u )  =  ( u  o.  ( s M t ) ) )
5015proplem3 13871 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  =  ( s ( .r `  D
) t ) )
51223adantr3 1118 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) t )  =  ( t  o.  s ) )
5250, 51eqtrd 2436 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  =  ( t  o.  s ) )
5352coeq2d 4994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  (
s M t ) )  =  ( u  o.  ( t  o.  s ) ) )
5446, 49, 533eqtrd 2440 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( u  o.  ( t  o.  s ) ) )
55 coass 5347 . . . 4  |-  ( ( u  o.  t )  o.  s )  =  ( u  o.  (
t  o.  s ) )
5654, 55syl6eqr 2454 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( ( u  o.  t )  o.  s ) )
5732, 44, 563eqtr4rd 2447 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( s M ( t M u ) ) )
581, 2, 3, 10tendodi2 31267 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  u  e.  E  /\  s  e.  E ) )  -> 
( ( t P u )  o.  s
)  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
5935, 38, 37, 36, 58syl13anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( t P u )  o.  s
)  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
6015oveqd 6057 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M ( t P u ) )  =  ( s ( .r `  D
) ( t P u ) ) )
6160adantr 452 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( s ( .r `  D
) ( t P u ) ) )
621, 2, 3, 10tendoplcl 31263 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  u  e.  E
)  ->  ( t P u )  e.  E )
6335, 38, 37, 62syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t P u )  e.  E )
641, 2, 3, 4, 12erngmul-rN 31296 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t P u )  e.  E ) )  -> 
( s ( .r
`  D ) ( t P u ) )  =  ( ( t P u )  o.  s ) )
6535, 36, 63, 64syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) ( t P u ) )  =  ( ( t P u )  o.  s ) )
6661, 65eqtrd 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( ( t P u )  o.  s ) )
6715proplem3 13871 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M u )  =  ( s ( .r `  D
) u ) )
681, 2, 3, 4, 12erngmul-rN 31296 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) u )  =  ( u  o.  s ) )
69683adantr2 1117 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) u )  =  ( u  o.  s ) )
7067, 69eqtrd 2436 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M u )  =  ( u  o.  s ) )
7152, 70oveq12d 6058 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) P ( s M u ) )  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
7259, 66, 713eqtr4d 2446 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( ( s M t ) P ( s M u ) ) )
731, 2, 3, 10tendodi1 31266 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  E  /\  s  e.  E  /\  t  e.  E ) )  -> 
( u  o.  (
s P t ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
7435, 37, 36, 38, 73syl13anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  (
s P t ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
7515adantr 452 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  ->  M  =  ( .r `  D ) )
7675oveqd 6057 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( ( s P t ) ( .r `  D
) u ) )
771, 2, 3, 10tendoplcl 31263 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s P t )  e.  E )
78773adant3r3 1164 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s P t )  e.  E )
791, 2, 3, 4, 12erngmul-rN 31296 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s P t )  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) ( .r
`  D ) u )  =  ( u  o.  ( s P t ) ) )
8035, 78, 37, 79syl12anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) ( .r
`  D ) u )  =  ( u  o.  ( s P t ) ) )
8176, 80eqtrd 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( u  o.  ( s P t ) ) )
8270, 31oveq12d 6058 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M u ) P ( t M u ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
8374, 81, 823eqtr4d 2446 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( ( s M u ) P ( t M u ) ) )
841, 2, 3tendoidcl 31251 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
8515oveqd 6057 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) M s )  =  ( (  _I  |`  T ) ( .r `  D
) s ) )
8685adantr 452 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) M s )  =  ( (  _I  |`  T ) ( .r `  D
) s ) )
87 simpl 444 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
8884adantr 452 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  (  _I  |`  T )  e.  E
)
89 simpr 448 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  s  e.  E )
901, 2, 3, 4, 12erngmul-rN 31296 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  E
) )  ->  (
(  _I  |`  T ) ( .r `  D
) s )  =  ( s  o.  (  _I  |`  T ) ) )
9187, 88, 89, 90syl12anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) ( .r `  D ) s )  =  ( s  o.  (  _I  |`  T ) ) )
921, 2, 3tendo1mulr 31253 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s  o.  (  _I  |`  T ) )  =  s )
9386, 91, 923eqtrd 2440 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) M s )  =  s )
9415oveqd 6057 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M (  _I  |`  T )
)  =  ( s ( .r `  D
) (  _I  |`  T ) ) )
9594adantr 452 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s M (  _I  |`  T ) )  =  ( s ( .r `  D
) (  _I  |`  T ) ) )
961, 2, 3, 4, 12erngmul-rN 31296 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  (  _I  |`  T )  e.  E
) )  ->  (
s ( .r `  D ) (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  s ) )
9787, 89, 88, 96syl12anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s
( .r `  D
) (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  s ) )
981, 2, 3tendo1mul 31252 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T )  o.  s )  =  s )
9995, 97, 983eqtrd 2440 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s M (  _I  |`  T ) )  =  s )
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isrngd 15653 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    e. cmpt 4226    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   Basecbs 13424   +g cplusg 13484   .rcmulr 13485   Ringcrg 15615   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   EDRing Rcedring-rN 31236
This theorem is referenced by:  erngdvlem4-rN  31481  erngrng-rN  31482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-mulr 13498  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-grp 14767  df-mgp 15604  df-rng 15618  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring-rN 31238
  Copyright terms: Public domain W3C validator