Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdv-rN Structured version   Unicode version

Theorem erngdv-rN 34642
Description: An endomorphism ring is a division ring. Todo: fix comment. (Contributed by NM, 11-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r  |-  H  =  ( LHyp `  K
)
ernggrp.d-r  |-  D  =  ( ( EDRingR `  K ) `  W
)
Assertion
Ref Expression
erngdv-rN  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )

Proof of Theorem erngdv-rN
Dummy variables  f 
s  a  b  g  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 ernggrp.h-r . . 3  |-  H  =  ( LHyp `  K
)
3 eqid 2441 . . 3  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 34209 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  ( ( LTrn `  K
) `  W )
f  =/=  (  _I  |`  ( Base `  K
) ) )
5 ernggrp.d-r . . 3  |-  D  =  ( ( EDRingR `  K ) `  W
)
6 eqid 2441 . . 3  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
7 eqid 2441 . . 3  |-  ( a  e.  ( ( TEndo `  K ) `  W
) ,  b  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  ( ( LTrn `  K
) `  W )  |->  ( ( a `  f )  o.  (
b `  f )
) ) )  =  ( a  e.  ( ( TEndo `  K ) `  W ) ,  b  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  ( ( LTrn `  K
) `  W )  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
8 eqid 2441 . . 3  |-  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )  =  ( f  e.  ( ( LTrn `  K ) `  W
)  |->  (  _I  |`  ( Base `  K ) ) )
9 eqid 2441 . . 3  |-  ( a  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  ( ( LTrn `  K
) `  W )  |->  `' ( a `  f ) ) )  =  ( a  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  ( ( LTrn `  K
) `  W )  |->  `' ( a `  f ) ) )
10 eqid 2441 . . 3  |-  ( a  e.  ( ( TEndo `  K ) `  W
) ,  b  e.  ( ( TEndo `  K
) `  W )  |->  ( b  o.  a
) )  =  ( a  e.  ( (
TEndo `  K ) `  W ) ,  b  e.  ( ( TEndo `  K ) `  W
)  |->  ( b  o.  a ) )
11 eqid 2441 . . 3  |-  ( join `  K )  =  (
join `  K )
12 eqid 2441 . . 3  |-  ( meet `  K )  =  (
meet `  K )
13 eqid 2441 . . 3  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
14 eqid 2441 . . 3  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
15 eqid 2441 . . 3  |-  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  b ) ) (
meet `  K )
( ( f `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( b  o.  `' ( s `  f
) ) ) ) )  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  b ) ) (
meet `  K )
( ( f `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( b  o.  `' ( s `  f
) ) ) ) )
16 eqid 2441 . . 3  |-  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  g ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( ( ( trL `  K ) `  W
) `  b )
) ( meet `  K
) ( ( f `
 ( ( oc
`  K ) `  W ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  ( b  o.  `' ( s `  f ) ) ) ) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( g  o.  `' b ) ) ) )  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  g ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( ( ( trL `  K ) `  W
) `  b )
) ( meet `  K
) ( ( f `
 ( ( oc
`  K ) `  W ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  ( b  o.  `' ( s `  f ) ) ) ) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( g  o.  `' b ) ) ) )
17 eqid 2441 . . 3  |-  ( iota_ z  e.  ( ( LTrn `  K ) `  W
) A. b  e.  ( ( LTrn `  K
) `  W )
( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( ( ( trL `  K ) `
 W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  ( s `  f
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  g ) )  -> 
( z `  (
( oc `  K
) `  W )
)  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  g ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( ( ( trL `  K ) `  W
) `  b )
) ( meet `  K
) ( ( f `
 ( ( oc
`  K ) `  W ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  ( b  o.  `' ( s `  f ) ) ) ) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( g  o.  `' b ) ) ) ) ) )  =  ( iota_ z  e.  ( ( LTrn `  K
) `  W ) A. b  e.  (
( LTrn `  K ) `  W ) ( ( b  =/=  (  _I  |`  ( Base `  K
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  ( s `  f
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  g ) )  -> 
( z `  (
( oc `  K
) `  W )
)  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  g ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( ( ( trL `  K ) `  W
) `  b )
) ( meet `  K
) ( ( f `
 ( ( oc
`  K ) `  W ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  ( b  o.  `' ( s `  f ) ) ) ) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( g  o.  `' b ) ) ) ) ) )
18 eqid 2441 . . 3  |-  ( g  e.  ( ( LTrn `  K ) `  W
)  |->  if ( ( s `  f )  =  f ,  g ,  ( iota_ z  e.  ( ( LTrn `  K
) `  W ) A. b  e.  (
( LTrn `  K ) `  W ) ( ( b  =/=  (  _I  |`  ( Base `  K
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  ( s `  f
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  g ) )  -> 
( z `  (
( oc `  K
) `  W )
)  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  g ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( ( ( trL `  K ) `  W
) `  b )
) ( meet `  K
) ( ( f `
 ( ( oc
`  K ) `  W ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  ( b  o.  `' ( s `  f ) ) ) ) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( g  o.  `' b ) ) ) ) ) ) ) )  =  ( g  e.  ( ( LTrn `  K ) `  W
)  |->  if ( ( s `  f )  =  f ,  g ,  ( iota_ z  e.  ( ( LTrn `  K
) `  W ) A. b  e.  (
( LTrn `  K ) `  W ) ( ( b  =/=  (  _I  |`  ( Base `  K
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  ( s `  f
) )  /\  (
( ( trL `  K
) `  W ) `  b )  =/=  (
( ( trL `  K
) `  W ) `  g ) )  -> 
( z `  (
( oc `  K
) `  W )
)  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( ( ( trL `  K ) `
 W ) `  g ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( ( ( trL `  K ) `  W
) `  b )
) ( meet `  K
) ( ( f `
 ( ( oc
`  K ) `  W ) ) (
join `  K )
( ( ( trL `  K ) `  W
) `  ( b  o.  `' ( s `  f ) ) ) ) ) ( join `  K ) ( ( ( trL `  K
) `  W ) `  ( g  o.  `' b ) ) ) ) ) ) ) )
192, 5, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18erngdvlem4-rN 34640 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( ( LTrn `  K
) `  W )  /\  f  =/=  (  _I  |`  ( Base `  K
) ) ) )  ->  D  e.  DivRing )
204, 19rexlimddv 2843 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   A.wral 2713   ifcif 3789    e. cmpt 4348    _I cid 4629   `'ccnv 4837    |` cres 4840    o. ccom 4842   ` cfv 5416   iota_crio 6049  (class class class)co 6089    e. cmpt2 6091   Basecbs 14172   occoc 14244   joincjn 15112   meetcmee 15113   DivRingcdr 16830   HLchlt 32992   LHypclh 33625   LTrncltrn 33742   trLctrl 33799   TEndoctendo 34393   EDRingRcedring-rN 34395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-riotaBAD 32601
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-tpos 6743  df-undef 6790  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-n0 10578  df-z 10645  df-uz 10860  df-fz 11436  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-0g 14378  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-p1 15208  df-lat 15214  df-clat 15276  df-mnd 15413  df-grp 15543  df-minusg 15544  df-mgp 16590  df-ur 16602  df-rng 16645  df-oppr 16713  df-dvdsr 16731  df-unit 16732  df-invr 16762  df-dvr 16773  df-drng 16832  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-llines 33139  df-lplanes 33140  df-lvols 33141  df-lines 33142  df-psubsp 33144  df-pmap 33145  df-padd 33437  df-lhyp 33629  df-laut 33630  df-ldil 33745  df-ltrn 33746  df-trl 33800  df-tendo 34396  df-edring-rN 34397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator