Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngbase Structured version   Unicode version

Theorem erngbase 35615
Description: The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom  W). TODO: the .t hypothesis isn't used. (Also look at others.) (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
erngset.h  |-  H  =  ( LHyp `  K
)
erngset.t  |-  T  =  ( ( LTrn `  K
) `  W )
erngset.e  |-  E  =  ( ( TEndo `  K
) `  W )
erngset.d  |-  D  =  ( ( EDRing `  K
) `  W )
erng.c  |-  C  =  ( Base `  D
)
Assertion
Ref Expression
erngbase  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  E )

Proof of Theorem erngbase
Dummy variables  f 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erngset.h . . . 4  |-  H  =  ( LHyp `  K
)
2 erngset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 erngset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 erngset.d . . . 4  |-  D  =  ( ( EDRing `  K
) `  W )
51, 2, 3, 4erngset 35614 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  D  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. } )
65fveq2d 5870 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( Base `  D
)  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } ) )
7 erng.c . 2  |-  C  =  ( Base `  D
)
8 fvex 5876 . . . 4  |-  ( (
TEndo `  K ) `  W )  e.  _V
93, 8eqeltri 2551 . . 3  |-  E  e. 
_V
10 eqid 2467 . . . 4  |-  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. }  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( s  o.  t ) )
>. }
1110rngbase 14603 . . 3  |-  ( E  e.  _V  ->  E  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } ) )
129, 11ax-mp 5 . 2  |-  E  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( s  o.  t ) ) >. } )
136, 7, 123eqtr4g 2533 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   {ctp 4031   <.cop 4033    |-> cmpt 4505    o. ccom 5003   ` cfv 5588    |-> cmpt2 6286   ndxcnx 14487   Basecbs 14490   +g cplusg 14555   .rcmulr 14556   LHypclh 34798   LTrncltrn 34915   TEndoctendo 35566   EDRingcedring 35567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-plusg 14568  df-mulr 14569  df-edring 35571
This theorem is referenced by:  erng1lem  35801  erngdvlem1  35802  erngdvlem2N  35803  erngdvlem3  35804  erngdvlem4  35805  erng0g  35808  erng1r  35809  dvabase  35821  dvhbase  35898
  Copyright terms: Public domain W3C validator