Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngbase-rN Structured version   Unicode version

Theorem erngbase-rN 34088
Description: The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom  W). (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r  |-  H  =  ( LHyp `  K
)
erngset.t-r  |-  T  =  ( ( LTrn `  K
) `  W )
erngset.e-r  |-  E  =  ( ( TEndo `  K
) `  W )
erngset.d-r  |-  D  =  ( ( EDRingR `  K ) `  W
)
erng.c-r  |-  C  =  ( Base `  D
)
Assertion
Ref Expression
erngbase-rN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  E )

Proof of Theorem erngbase-rN
Dummy variables  f 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erngset.h-r . . . 4  |-  H  =  ( LHyp `  K
)
2 erngset.t-r . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 erngset.e-r . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 erngset.d-r . . . 4  |-  D  =  ( ( EDRingR `  K ) `  W
)
51, 2, 3, 4erngset-rN 34087 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  D  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( t  o.  s ) )
>. } )
65fveq2d 5885 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( Base `  D
)  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( t  o.  s ) ) >. } ) )
7 erng.c-r . 2  |-  C  =  ( Base `  D
)
8 fvex 5891 . . . 4  |-  ( (
TEndo `  K ) `  W )  e.  _V
93, 8eqeltri 2513 . . 3  |-  E  e. 
_V
10 eqid 2429 . . . 4  |-  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( t  o.  s ) )
>. }  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( t  o.  s ) )
>. }
1110rngbase 15204 . . 3  |-  ( E  e.  _V  ->  E  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( t  o.  s ) ) >. } ) )
129, 11ax-mp 5 . 2  |-  E  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( t  o.  s ) ) >. } )
136, 7, 123eqtr4g 2495 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   _Vcvv 3087   {ctp 4006   <.cop 4008    |-> cmpt 4484    o. ccom 4858   ` cfv 5601    |-> cmpt2 6307   ndxcnx 15081   Basecbs 15084   +g cplusg 15152   .rcmulr 15153   LHypclh 33261   LTrncltrn 33378   TEndoctendo 34031   EDRingRcedring-rN 34033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-plusg 15165  df-mulr 15166  df-edring-rN 34035
This theorem is referenced by:  erngdvlem1-rN  34275  erngdvlem2-rN  34276  erngdvlem3-rN  34277  erngdvlem4-rN  34278
  Copyright terms: Public domain W3C validator