MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq2 Structured version   Unicode version

Theorem ereq2 7311
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq2  |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )

Proof of Theorem ereq2
StepHypRef Expression
1 eqeq2 2469 . . 3  |-  ( A  =  B  ->  ( dom  R  =  A  <->  dom  R  =  B ) )
213anbi2d 1302 . 2  |-  ( A  =  B  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  B  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
) )
3 df-er 7303 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
4 df-er 7303 . 2  |-  ( R  Er  B  <->  ( Rel  R  /\  dom  R  =  B  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
52, 3, 43bitr4g 288 1  |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 971    = wceq 1398    u. cun 3459    C_ wss 3461   `'ccnv 4987   dom cdm 4988    o. ccom 4992   Rel wrel 4993    Er wer 7300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973  df-cleq 2446  df-er 7303
This theorem is referenced by:  iserd  7329  efgval  16934  frgp0  16977  frgpmhm  16982
  Copyright terms: Public domain W3C validator