Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem9 Structured version   Unicode version

Theorem erdszelem9 27039
Description: Lemma for erdsze 27042. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.i  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.j  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.t  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
Assertion
Ref Expression
erdszelem9  |-  ( ph  ->  T : ( 1 ... N ) -1-1-> ( NN  X.  NN ) )
Distinct variable groups:    x, y, n, F    n, I, x, y    n, J, x, y    n, N, x, y    ph, n, x, y
Allowed substitution hints:    T( x, y, n)

Proof of Theorem erdszelem9
Dummy variables  w  z  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
2 erdsze.f . . . . . 6  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
3 erdszelem.i . . . . . 6  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
4 ltso 9447 . . . . . 6  |-  <  Or  RR
51, 2, 3, 4erdszelem6 27036 . . . . 5  |-  ( ph  ->  I : ( 1 ... N ) --> NN )
65ffvelrnda 5838 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
I `  n )  e.  NN )
7 erdszelem.j . . . . . 6  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
8 cnvso 5371 . . . . . . 7  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
94, 8mpbi 208 . . . . . 6  |-  `'  <  Or  RR
101, 2, 7, 9erdszelem6 27036 . . . . 5  |-  ( ph  ->  J : ( 1 ... N ) --> NN )
1110ffvelrnda 5838 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( J `  n )  e.  NN )
12 opelxpi 4866 . . . 4  |-  ( ( ( I `  n
)  e.  NN  /\  ( J `  n )  e.  NN )  ->  <. ( I `  n
) ,  ( J `
 n ) >.  e.  ( NN  X.  NN ) )
136, 11, 12syl2anc 661 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  <. (
I `  n ) ,  ( J `  n ) >.  e.  ( NN  X.  NN ) )
14 erdszelem.t . . 3  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
1513, 14fmptd 5862 . 2  |-  ( ph  ->  T : ( 1 ... N ) --> ( NN  X.  NN ) )
16 fveq2 5686 . . . . . 6  |-  ( a  =  z  ->  ( T `  a )  =  ( T `  z ) )
17 fveq2 5686 . . . . . 6  |-  ( b  =  w  ->  ( T `  b )  =  ( T `  w ) )
1816, 17eqeqan12d 2453 . . . . 5  |-  ( ( a  =  z  /\  b  =  w )  ->  ( ( T `  a )  =  ( T `  b )  <-> 
( T `  z
)  =  ( T `
 w ) ) )
19 eqeq12 2450 . . . . 5  |-  ( ( a  =  z  /\  b  =  w )  ->  ( a  =  b  <-> 
z  =  w ) )
2018, 19imbi12d 320 . . . 4  |-  ( ( a  =  z  /\  b  =  w )  ->  ( ( ( T `
 a )  =  ( T `  b
)  ->  a  =  b )  <->  ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) ) )
21 fveq2 5686 . . . . . . 7  |-  ( a  =  w  ->  ( T `  a )  =  ( T `  w ) )
22 fveq2 5686 . . . . . . 7  |-  ( b  =  z  ->  ( T `  b )  =  ( T `  z ) )
2321, 22eqeqan12d 2453 . . . . . 6  |-  ( ( a  =  w  /\  b  =  z )  ->  ( ( T `  a )  =  ( T `  b )  <-> 
( T `  w
)  =  ( T `
 z ) ) )
24 eqcom 2440 . . . . . 6  |-  ( ( T `  w )  =  ( T `  z )  <->  ( T `  z )  =  ( T `  w ) )
2523, 24syl6bb 261 . . . . 5  |-  ( ( a  =  w  /\  b  =  z )  ->  ( ( T `  a )  =  ( T `  b )  <-> 
( T `  z
)  =  ( T `
 w ) ) )
26 eqeq12 2450 . . . . . 6  |-  ( ( a  =  w  /\  b  =  z )  ->  ( a  =  b  <-> 
w  =  z ) )
27 eqcom 2440 . . . . . 6  |-  ( w  =  z  <->  z  =  w )
2826, 27syl6bb 261 . . . . 5  |-  ( ( a  =  w  /\  b  =  z )  ->  ( a  =  b  <-> 
z  =  w ) )
2925, 28imbi12d 320 . . . 4  |-  ( ( a  =  w  /\  b  =  z )  ->  ( ( ( T `
 a )  =  ( T `  b
)  ->  a  =  b )  <->  ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) ) )
30 elfzelz 11445 . . . . . . 7  |-  ( z  e.  ( 1 ... N )  ->  z  e.  ZZ )
3130zred 10739 . . . . . 6  |-  ( z  e.  ( 1 ... N )  ->  z  e.  RR )
3231ssriv 3355 . . . . 5  |-  ( 1 ... N )  C_  RR
3332a1i 11 . . . 4  |-  ( ph  ->  ( 1 ... N
)  C_  RR )
34 biidd 237 . . . 4  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
) ) )  -> 
( ( ( T `
 z )  =  ( T `  w
)  ->  z  =  w )  <->  ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) ) )
35 simpr1 994 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  z  e.  ( 1 ... N
) )
36 fveq2 5686 . . . . . . . . . 10  |-  ( n  =  z  ->  (
I `  n )  =  ( I `  z ) )
37 fveq2 5686 . . . . . . . . . 10  |-  ( n  =  z  ->  ( J `  n )  =  ( J `  z ) )
3836, 37opeq12d 4062 . . . . . . . . 9  |-  ( n  =  z  ->  <. (
I `  n ) ,  ( J `  n ) >.  =  <. ( I `  z ) ,  ( J `  z ) >. )
39 opex 4551 . . . . . . . . 9  |-  <. (
I `  z ) ,  ( J `  z ) >.  e.  _V
4038, 14, 39fvmpt 5769 . . . . . . . 8  |-  ( z  e.  ( 1 ... N )  ->  ( T `  z )  =  <. ( I `  z ) ,  ( J `  z )
>. )
4135, 40syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  ( T `  z )  =  <. ( I `  z ) ,  ( J `  z )
>. )
42 simpr2 995 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  w  e.  ( 1 ... N
) )
43 fveq2 5686 . . . . . . . . . 10  |-  ( n  =  w  ->  (
I `  n )  =  ( I `  w ) )
44 fveq2 5686 . . . . . . . . . 10  |-  ( n  =  w  ->  ( J `  n )  =  ( J `  w ) )
4543, 44opeq12d 4062 . . . . . . . . 9  |-  ( n  =  w  ->  <. (
I `  n ) ,  ( J `  n ) >.  =  <. ( I `  w ) ,  ( J `  w ) >. )
46 opex 4551 . . . . . . . . 9  |-  <. (
I `  w ) ,  ( J `  w ) >.  e.  _V
4745, 14, 46fvmpt 5769 . . . . . . . 8  |-  ( w  e.  ( 1 ... N )  ->  ( T `  w )  =  <. ( I `  w ) ,  ( J `  w )
>. )
4842, 47syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  ( T `  w )  =  <. ( I `  w ) ,  ( J `  w )
>. )
4941, 48eqeq12d 2452 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( T `  z
)  =  ( T `
 w )  <->  <. ( I `
 z ) ,  ( J `  z
) >.  =  <. (
I `  w ) ,  ( J `  w ) >. )
)
50 fvex 5696 . . . . . . . 8  |-  ( I `
 z )  e. 
_V
51 fvex 5696 . . . . . . . 8  |-  ( J `
 z )  e. 
_V
5250, 51opth 4561 . . . . . . 7  |-  ( <.
( I `  z
) ,  ( J `
 z ) >.  =  <. ( I `  w ) ,  ( J `  w )
>. 
<->  ( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) ) )
5335, 31syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  z  e.  RR )
5432, 42sseldi 3349 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  w  e.  RR )
55 simpr3 996 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  z  <_  w )
5653, 54, 55leltned 9517 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
z  <  w  <->  w  =/=  z ) )
572adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  F : ( 1 ... N ) -1-1-> RR )
58 f1fveq 5970 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) -1-1-> RR  /\  ( z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N ) ) )  ->  (
( F `  z
)  =  ( F `
 w )  <->  z  =  w ) )
5957, 35, 42, 58syl12anc 1216 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( F `  z
)  =  ( F `
 w )  <->  z  =  w ) )
6059, 27syl6bbr 263 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( F `  z
)  =  ( F `
 w )  <->  w  =  z ) )
6160necon3bid 2638 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( F `  z
)  =/=  ( F `
 w )  <->  w  =/=  z ) )
6256, 61bitr4d 256 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
z  <  w  <->  ( F `  z )  =/=  ( F `  w )
) )
6362biimpa 484 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( F `  z )  =/=  ( F `  w )
)
64 f1f 5601 . . . . . . . . . . . . . . . 16  |-  ( F : ( 1 ... N ) -1-1-> RR  ->  F : ( 1 ... N ) --> RR )
652, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : ( 1 ... N ) --> RR )
6665ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  F :
( 1 ... N
) --> RR )
6735adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  z  e.  ( 1 ... N
) )
6866, 67ffvelrnd 5839 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( F `  z )  e.  RR )
6942adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  w  e.  ( 1 ... N
) )
7066, 69ffvelrnd 5839 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( F `  w )  e.  RR )
7168, 70lttri2d 9505 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( ( F `  z )  =/=  ( F `  w
)  <->  ( ( F `
 z )  < 
( F `  w
)  \/  ( F `
 w )  < 
( F `  z
) ) ) )
7263, 71mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( ( F `  z )  <  ( F `  w
)  \/  ( F `
 w )  < 
( F `  z
) ) )
731ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  N  e.  NN )
742ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  F :
( 1 ... N
) -1-1-> RR )
75 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  z  <  w )
7673, 74, 3, 4, 67, 69, 75erdszelem8 27038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( (
I `  z )  =  ( I `  w )  ->  -.  ( F `  z )  <  ( F `  w ) ) )
7773, 74, 7, 9, 67, 69, 75erdszelem8 27038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( ( J `  z )  =  ( J `  w )  ->  -.  ( F `  z ) `'  <  ( F `  w ) ) )
7876, 77anim12d 563 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( (
( I `  z
)  =  ( I `
 w )  /\  ( J `  z )  =  ( J `  w ) )  -> 
( -.  ( F `
 z )  < 
( F `  w
)  /\  -.  ( F `  z ) `'  <  ( F `  w ) ) ) )
79 ioran 490 . . . . . . . . . . . . 13  |-  ( -.  ( ( F `  z )  <  ( F `  w )  \/  ( F `  w
)  <  ( F `  z ) )  <->  ( -.  ( F `  z )  <  ( F `  w )  /\  -.  ( F `  w )  <  ( F `  z ) ) )
80 fvex 5696 . . . . . . . . . . . . . . . 16  |-  ( F `
 z )  e. 
_V
81 fvex 5696 . . . . . . . . . . . . . . . 16  |-  ( F `
 w )  e. 
_V
8280, 81brcnv 5017 . . . . . . . . . . . . . . 15  |-  ( ( F `  z ) `'  <  ( F `  w )  <->  ( F `  w )  <  ( F `  z )
)
8382notbii 296 . . . . . . . . . . . . . 14  |-  ( -.  ( F `  z
) `'  <  ( F `  w )  <->  -.  ( F `  w
)  <  ( F `  z ) )
8483anbi2i 694 . . . . . . . . . . . . 13  |-  ( ( -.  ( F `  z )  <  ( F `  w )  /\  -.  ( F `  z ) `'  <  ( F `  w ) )  <->  ( -.  ( F `  z )  <  ( F `  w
)  /\  -.  ( F `  w )  <  ( F `  z
) ) )
8579, 84bitr4i 252 . . . . . . . . . . . 12  |-  ( -.  ( ( F `  z )  <  ( F `  w )  \/  ( F `  w
)  <  ( F `  z ) )  <->  ( -.  ( F `  z )  <  ( F `  w )  /\  -.  ( F `  z ) `'  <  ( F `  w ) ) )
8678, 85syl6ibr 227 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( (
( I `  z
)  =  ( I `
 w )  /\  ( J `  z )  =  ( J `  w ) )  ->  -.  ( ( F `  z )  <  ( F `  w )  \/  ( F `  w
)  <  ( F `  z ) ) ) )
8772, 86mt2d 117 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  -.  (
( I `  z
)  =  ( I `
 w )  /\  ( J `  z )  =  ( J `  w ) ) )
8887ex 434 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
z  <  w  ->  -.  ( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) ) ) )
8956, 88sylbird 235 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
w  =/=  z  ->  -.  ( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) ) ) )
9089necon4ad 2667 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) )  ->  w  =  z ) )
9152, 90syl5bi 217 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  ( <. ( I `  z
) ,  ( J `
 z ) >.  =  <. ( I `  w ) ,  ( J `  w )
>.  ->  w  =  z ) )
9249, 91sylbid 215 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( T `  z
)  =  ( T `
 w )  ->  w  =  z )
)
9392, 27syl6ib 226 . . . 4  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( T `  z
)  =  ( T `
 w )  -> 
z  =  w ) )
9420, 29, 33, 34, 93wlogle 9865 . . 3  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
) ) )  -> 
( ( T `  z )  =  ( T `  w )  ->  z  =  w ) )
9594ralrimivva 2803 . 2  |-  ( ph  ->  A. z  e.  ( 1 ... N ) A. w  e.  ( 1 ... N ) ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) )
96 dff13 5966 . 2  |-  ( T : ( 1 ... N ) -1-1-> ( NN 
X.  NN )  <->  ( T : ( 1 ... N ) --> ( NN 
X.  NN )  /\  A. z  e.  ( 1 ... N ) A. w  e.  ( 1 ... N ) ( ( T `  z
)  =  ( T `
 w )  -> 
z  =  w ) ) )
9715, 95, 96sylanbrc 664 1  |-  ( ph  ->  T : ( 1 ... N ) -1-1-> ( NN  X.  NN ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   {crab 2714    C_ wss 3323   ~Pcpw 3855   <.cop 3878   class class class wbr 4287    e. cmpt 4345    Or wor 4635    X. cxp 4833   `'ccnv 4834    |` cres 4837   "cima 4838   -->wf 5409   -1-1->wf1 5410   ` cfv 5413    Isom wiso 5414  (class class class)co 6086   supcsup 7682   RRcr 9273   1c1 9275    < clt 9410    <_ cle 9411   NNcn 10314   ...cfz 11429   #chash 12095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-hash 12096
This theorem is referenced by:  erdszelem10  27040
  Copyright terms: Public domain W3C validator