Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem9 Structured version   Unicode version

Theorem erdszelem9 28283
Description: Lemma for erdsze 28286. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.i  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.j  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.t  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
Assertion
Ref Expression
erdszelem9  |-  ( ph  ->  T : ( 1 ... N ) -1-1-> ( NN  X.  NN ) )
Distinct variable groups:    x, y, n, F    n, I, x, y    n, J, x, y    n, N, x, y    ph, n, x, y
Allowed substitution hints:    T( x, y, n)

Proof of Theorem erdszelem9
Dummy variables  w  z  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
2 erdsze.f . . . . . 6  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
3 erdszelem.i . . . . . 6  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
4 ltso 9661 . . . . . 6  |-  <  Or  RR
51, 2, 3, 4erdszelem6 28280 . . . . 5  |-  ( ph  ->  I : ( 1 ... N ) --> NN )
65ffvelrnda 6019 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
I `  n )  e.  NN )
7 erdszelem.j . . . . . 6  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
8 cnvso 5544 . . . . . . 7  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
94, 8mpbi 208 . . . . . 6  |-  `'  <  Or  RR
101, 2, 7, 9erdszelem6 28280 . . . . 5  |-  ( ph  ->  J : ( 1 ... N ) --> NN )
1110ffvelrnda 6019 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( J `  n )  e.  NN )
12 opelxpi 5030 . . . 4  |-  ( ( ( I `  n
)  e.  NN  /\  ( J `  n )  e.  NN )  ->  <. ( I `  n
) ,  ( J `
 n ) >.  e.  ( NN  X.  NN ) )
136, 11, 12syl2anc 661 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  <. (
I `  n ) ,  ( J `  n ) >.  e.  ( NN  X.  NN ) )
14 erdszelem.t . . 3  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
1513, 14fmptd 6043 . 2  |-  ( ph  ->  T : ( 1 ... N ) --> ( NN  X.  NN ) )
16 fveq2 5864 . . . . . 6  |-  ( a  =  z  ->  ( T `  a )  =  ( T `  z ) )
17 fveq2 5864 . . . . . 6  |-  ( b  =  w  ->  ( T `  b )  =  ( T `  w ) )
1816, 17eqeqan12d 2490 . . . . 5  |-  ( ( a  =  z  /\  b  =  w )  ->  ( ( T `  a )  =  ( T `  b )  <-> 
( T `  z
)  =  ( T `
 w ) ) )
19 eqeq12 2486 . . . . 5  |-  ( ( a  =  z  /\  b  =  w )  ->  ( a  =  b  <-> 
z  =  w ) )
2018, 19imbi12d 320 . . . 4  |-  ( ( a  =  z  /\  b  =  w )  ->  ( ( ( T `
 a )  =  ( T `  b
)  ->  a  =  b )  <->  ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) ) )
21 fveq2 5864 . . . . . . 7  |-  ( a  =  w  ->  ( T `  a )  =  ( T `  w ) )
22 fveq2 5864 . . . . . . 7  |-  ( b  =  z  ->  ( T `  b )  =  ( T `  z ) )
2321, 22eqeqan12d 2490 . . . . . 6  |-  ( ( a  =  w  /\  b  =  z )  ->  ( ( T `  a )  =  ( T `  b )  <-> 
( T `  w
)  =  ( T `
 z ) ) )
24 eqcom 2476 . . . . . 6  |-  ( ( T `  w )  =  ( T `  z )  <->  ( T `  z )  =  ( T `  w ) )
2523, 24syl6bb 261 . . . . 5  |-  ( ( a  =  w  /\  b  =  z )  ->  ( ( T `  a )  =  ( T `  b )  <-> 
( T `  z
)  =  ( T `
 w ) ) )
26 eqeq12 2486 . . . . . 6  |-  ( ( a  =  w  /\  b  =  z )  ->  ( a  =  b  <-> 
w  =  z ) )
27 eqcom 2476 . . . . . 6  |-  ( w  =  z  <->  z  =  w )
2826, 27syl6bb 261 . . . . 5  |-  ( ( a  =  w  /\  b  =  z )  ->  ( a  =  b  <-> 
z  =  w ) )
2925, 28imbi12d 320 . . . 4  |-  ( ( a  =  w  /\  b  =  z )  ->  ( ( ( T `
 a )  =  ( T `  b
)  ->  a  =  b )  <->  ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) ) )
30 elfzelz 11684 . . . . . . 7  |-  ( z  e.  ( 1 ... N )  ->  z  e.  ZZ )
3130zred 10962 . . . . . 6  |-  ( z  e.  ( 1 ... N )  ->  z  e.  RR )
3231ssriv 3508 . . . . 5  |-  ( 1 ... N )  C_  RR
3332a1i 11 . . . 4  |-  ( ph  ->  ( 1 ... N
)  C_  RR )
34 biidd 237 . . . 4  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
) ) )  -> 
( ( ( T `
 z )  =  ( T `  w
)  ->  z  =  w )  <->  ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) ) )
35 simpr1 1002 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  z  e.  ( 1 ... N
) )
36 fveq2 5864 . . . . . . . . . 10  |-  ( n  =  z  ->  (
I `  n )  =  ( I `  z ) )
37 fveq2 5864 . . . . . . . . . 10  |-  ( n  =  z  ->  ( J `  n )  =  ( J `  z ) )
3836, 37opeq12d 4221 . . . . . . . . 9  |-  ( n  =  z  ->  <. (
I `  n ) ,  ( J `  n ) >.  =  <. ( I `  z ) ,  ( J `  z ) >. )
39 opex 4711 . . . . . . . . 9  |-  <. (
I `  z ) ,  ( J `  z ) >.  e.  _V
4038, 14, 39fvmpt 5948 . . . . . . . 8  |-  ( z  e.  ( 1 ... N )  ->  ( T `  z )  =  <. ( I `  z ) ,  ( J `  z )
>. )
4135, 40syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  ( T `  z )  =  <. ( I `  z ) ,  ( J `  z )
>. )
42 simpr2 1003 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  w  e.  ( 1 ... N
) )
43 fveq2 5864 . . . . . . . . . 10  |-  ( n  =  w  ->  (
I `  n )  =  ( I `  w ) )
44 fveq2 5864 . . . . . . . . . 10  |-  ( n  =  w  ->  ( J `  n )  =  ( J `  w ) )
4543, 44opeq12d 4221 . . . . . . . . 9  |-  ( n  =  w  ->  <. (
I `  n ) ,  ( J `  n ) >.  =  <. ( I `  w ) ,  ( J `  w ) >. )
46 opex 4711 . . . . . . . . 9  |-  <. (
I `  w ) ,  ( J `  w ) >.  e.  _V
4745, 14, 46fvmpt 5948 . . . . . . . 8  |-  ( w  e.  ( 1 ... N )  ->  ( T `  w )  =  <. ( I `  w ) ,  ( J `  w )
>. )
4842, 47syl 16 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  ( T `  w )  =  <. ( I `  w ) ,  ( J `  w )
>. )
4941, 48eqeq12d 2489 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( T `  z
)  =  ( T `
 w )  <->  <. ( I `
 z ) ,  ( J `  z
) >.  =  <. (
I `  w ) ,  ( J `  w ) >. )
)
50 fvex 5874 . . . . . . . 8  |-  ( I `
 z )  e. 
_V
51 fvex 5874 . . . . . . . 8  |-  ( J `
 z )  e. 
_V
5250, 51opth 4721 . . . . . . 7  |-  ( <.
( I `  z
) ,  ( J `
 z ) >.  =  <. ( I `  w ) ,  ( J `  w )
>. 
<->  ( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) ) )
5335, 31syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  z  e.  RR )
5432, 42sseldi 3502 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  w  e.  RR )
55 simpr3 1004 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  z  <_  w )
5653, 54, 55leltned 9731 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
z  <  w  <->  w  =/=  z ) )
572adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  F : ( 1 ... N ) -1-1-> RR )
58 f1fveq 6156 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) -1-1-> RR  /\  ( z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N ) ) )  ->  (
( F `  z
)  =  ( F `
 w )  <->  z  =  w ) )
5957, 35, 42, 58syl12anc 1226 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( F `  z
)  =  ( F `
 w )  <->  z  =  w ) )
6059, 27syl6bbr 263 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( F `  z
)  =  ( F `
 w )  <->  w  =  z ) )
6160necon3bid 2725 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( F `  z
)  =/=  ( F `
 w )  <->  w  =/=  z ) )
6256, 61bitr4d 256 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
z  <  w  <->  ( F `  z )  =/=  ( F `  w )
) )
6362biimpa 484 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( F `  z )  =/=  ( F `  w )
)
64 f1f 5779 . . . . . . . . . . . . . . . 16  |-  ( F : ( 1 ... N ) -1-1-> RR  ->  F : ( 1 ... N ) --> RR )
652, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : ( 1 ... N ) --> RR )
6665ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  F :
( 1 ... N
) --> RR )
6735adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  z  e.  ( 1 ... N
) )
6866, 67ffvelrnd 6020 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( F `  z )  e.  RR )
6942adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  w  e.  ( 1 ... N
) )
7066, 69ffvelrnd 6020 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( F `  w )  e.  RR )
7168, 70lttri2d 9719 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( ( F `  z )  =/=  ( F `  w
)  <->  ( ( F `
 z )  < 
( F `  w
)  \/  ( F `
 w )  < 
( F `  z
) ) ) )
7263, 71mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( ( F `  z )  <  ( F `  w
)  \/  ( F `
 w )  < 
( F `  z
) ) )
731ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  N  e.  NN )
742ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  F :
( 1 ... N
) -1-1-> RR )
75 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  z  <  w )
7673, 74, 3, 4, 67, 69, 75erdszelem8 28282 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( (
I `  z )  =  ( I `  w )  ->  -.  ( F `  z )  <  ( F `  w ) ) )
7773, 74, 7, 9, 67, 69, 75erdszelem8 28282 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( ( J `  z )  =  ( J `  w )  ->  -.  ( F `  z ) `'  <  ( F `  w ) ) )
7876, 77anim12d 563 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( (
( I `  z
)  =  ( I `
 w )  /\  ( J `  z )  =  ( J `  w ) )  -> 
( -.  ( F `
 z )  < 
( F `  w
)  /\  -.  ( F `  z ) `'  <  ( F `  w ) ) ) )
79 ioran 490 . . . . . . . . . . . . 13  |-  ( -.  ( ( F `  z )  <  ( F `  w )  \/  ( F `  w
)  <  ( F `  z ) )  <->  ( -.  ( F `  z )  <  ( F `  w )  /\  -.  ( F `  w )  <  ( F `  z ) ) )
80 fvex 5874 . . . . . . . . . . . . . . . 16  |-  ( F `
 z )  e. 
_V
81 fvex 5874 . . . . . . . . . . . . . . . 16  |-  ( F `
 w )  e. 
_V
8280, 81brcnv 5183 . . . . . . . . . . . . . . 15  |-  ( ( F `  z ) `'  <  ( F `  w )  <->  ( F `  w )  <  ( F `  z )
)
8382notbii 296 . . . . . . . . . . . . . 14  |-  ( -.  ( F `  z
) `'  <  ( F `  w )  <->  -.  ( F `  w
)  <  ( F `  z ) )
8483anbi2i 694 . . . . . . . . . . . . 13  |-  ( ( -.  ( F `  z )  <  ( F `  w )  /\  -.  ( F `  z ) `'  <  ( F `  w ) )  <->  ( -.  ( F `  z )  <  ( F `  w
)  /\  -.  ( F `  w )  <  ( F `  z
) ) )
8579, 84bitr4i 252 . . . . . . . . . . . 12  |-  ( -.  ( ( F `  z )  <  ( F `  w )  \/  ( F `  w
)  <  ( F `  z ) )  <->  ( -.  ( F `  z )  <  ( F `  w )  /\  -.  ( F `  z ) `'  <  ( F `  w ) ) )
8678, 85syl6ibr 227 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  ( (
( I `  z
)  =  ( I `
 w )  /\  ( J `  z )  =  ( J `  w ) )  ->  -.  ( ( F `  z )  <  ( F `  w )  \/  ( F `  w
)  <  ( F `  z ) ) ) )
8772, 86mt2d 117 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  ( 1 ... N )  /\  w  e.  ( 1 ... N )  /\  z  <_  w ) )  /\  z  <  w
)  ->  -.  (
( I `  z
)  =  ( I `
 w )  /\  ( J `  z )  =  ( J `  w ) ) )
8887ex 434 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
z  <  w  ->  -.  ( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) ) ) )
8956, 88sylbird 235 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
w  =/=  z  ->  -.  ( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) ) ) )
9089necon4ad 2687 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( ( I `  z )  =  ( I `  w )  /\  ( J `  z )  =  ( J `  w ) )  ->  w  =  z ) )
9152, 90syl5bi 217 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  ( <. ( I `  z
) ,  ( J `
 z ) >.  =  <. ( I `  w ) ,  ( J `  w )
>.  ->  w  =  z ) )
9249, 91sylbid 215 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( T `  z
)  =  ( T `
 w )  ->  w  =  z )
)
9392, 27syl6ib 226 . . . 4  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
)  /\  z  <_  w ) )  ->  (
( T `  z
)  =  ( T `
 w )  -> 
z  =  w ) )
9420, 29, 33, 34, 93wlogle 10082 . . 3  |-  ( (
ph  /\  ( z  e.  ( 1 ... N
)  /\  w  e.  ( 1 ... N
) ) )  -> 
( ( T `  z )  =  ( T `  w )  ->  z  =  w ) )
9594ralrimivva 2885 . 2  |-  ( ph  ->  A. z  e.  ( 1 ... N ) A. w  e.  ( 1 ... N ) ( ( T `  z )  =  ( T `  w )  ->  z  =  w ) )
96 dff13 6152 . 2  |-  ( T : ( 1 ... N ) -1-1-> ( NN 
X.  NN )  <->  ( T : ( 1 ... N ) --> ( NN 
X.  NN )  /\  A. z  e.  ( 1 ... N ) A. w  e.  ( 1 ... N ) ( ( T `  z
)  =  ( T `
 w )  -> 
z  =  w ) ) )
9715, 95, 96sylanbrc 664 1  |-  ( ph  ->  T : ( 1 ... N ) -1-1-> ( NN  X.  NN ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   {crab 2818    C_ wss 3476   ~Pcpw 4010   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    Or wor 4799    X. cxp 4997   `'ccnv 4998    |` cres 5001   "cima 5002   -->wf 5582   -1-1->wf1 5583   ` cfv 5586    Isom wiso 5587  (class class class)co 6282   supcsup 7896   RRcr 9487   1c1 9489    < clt 9624    <_ cle 9625   NNcn 10532   ...cfz 11668   #chash 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-hash 12370
This theorem is referenced by:  erdszelem10  28284
  Copyright terms: Public domain W3C validator