Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem3 Structured version   Unicode version

Theorem erdszelem3 28901
Description: Lemma for erdsze 28910. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.k  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
Assertion
Ref Expression
erdszelem3  |-  ( A  e.  ( 1 ... N )  ->  ( K `  A )  =  sup ( ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } ) ,  RR ,  <  )
)
Distinct variable groups:    x, y, F    x, A, y    x, O, y    x, N, y    ph, x, y
Allowed substitution hints:    K( x, y)

Proof of Theorem erdszelem3
StepHypRef Expression
1 oveq2 6278 . . . . . 6  |-  ( x  =  A  ->  (
1 ... x )  =  ( 1 ... A
) )
21pweqd 4004 . . . . 5  |-  ( x  =  A  ->  ~P ( 1 ... x
)  =  ~P (
1 ... A ) )
3 eleq1 2526 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  y  <->  A  e.  y ) )
43anbi2d 701 . . . . 5  |-  ( x  =  A  ->  (
( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  x  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F "
y ) )  /\  A  e.  y )
) )
52, 4rabeqbidv 3101 . . . 4  |-  ( x  =  A  ->  { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  x  e.  y ) }  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )
65imaeq2d 5325 . . 3  |-  ( x  =  A  ->  ( #
" { y  e. 
~P ( 1 ... x )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  x  e.  y ) } )  =  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )
76supeq1d 7897 . 2  |-  ( x  =  A  ->  sup ( ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) ,  RR ,  <  ) )
8 erdszelem.k . 2  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
9 ltso 9654 . . 3  |-  <  Or  RR
109supex 7914 . 2  |-  sup (
( # " { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) ,  RR ,  <  )  e.  _V
117, 8, 10fvmpt 5931 1  |-  ( A  e.  ( 1 ... N )  ->  ( K `  A )  =  sup ( ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } ) ,  RR ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   {crab 2808   ~Pcpw 3999    |-> cmpt 4497    |` cres 4990   "cima 4991   -1-1->wf1 5567   ` cfv 5570    Isom wiso 5571  (class class class)co 6270   supcsup 7892   RRcr 9480   1c1 9482    < clt 9617   NNcn 10531   ...cfz 11675   #chash 12387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-ltxr 9622
This theorem is referenced by:  erdszelem5  28903  erdszelem8  28906
  Copyright terms: Public domain W3C validator