Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Unicode version

Theorem erdszelem2 27010
Description: Lemma for erdsze 27020. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
Assertion
Ref Expression
erdszelem2  |-  ( (
# " S )  e.  Fin  /\  ( #
" S )  C_  NN )
Distinct variable groups:    y, A    y, F    y, O
Allowed substitution hint:    S( y)

Proof of Theorem erdszelem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fzfi 11790 . . . . 5  |-  ( 1 ... A )  e. 
Fin
2 pwfi 7602 . . . . 5  |-  ( ( 1 ... A )  e.  Fin  <->  ~P (
1 ... A )  e. 
Fin )
31, 2mpbi 208 . . . 4  |-  ~P (
1 ... A )  e. 
Fin
4 erdszelem1.1 . . . . 5  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
5 ssrab2 3434 . . . . 5  |-  { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  C_  ~P ( 1 ... A
)
64, 5eqsstri 3383 . . . 4  |-  S  C_  ~P ( 1 ... A
)
7 ssfi 7529 . . . 4  |-  ( ( ~P ( 1 ... A )  e.  Fin  /\  S  C_  ~P (
1 ... A ) )  ->  S  e.  Fin )
83, 6, 7mp2an 667 . . 3  |-  S  e. 
Fin
9 hashf 12106 . . . . 5  |-  # : _V
--> ( NN0  u.  { +oo } )
10 ffun 5558 . . . . 5  |-  ( # : _V --> ( NN0  u.  { +oo } )  ->  Fun  # )
119, 10ax-mp 5 . . . 4  |-  Fun  #
12 ssv 3373 . . . . 5  |-  S  C_  _V
139fdmi 5561 . . . . 5  |-  dom  #  =  _V
1412, 13sseqtr4i 3386 . . . 4  |-  S  C_  dom  #
15 fores 5626 . . . 4  |-  ( ( Fun  #  /\  S  C_  dom  # )  ->  ( #  |`  S ) : S -onto->
( # " S ) )
1611, 14, 15mp2an 667 . . 3  |-  ( #  |`  S ) : S -onto->
( # " S )
17 fofi 7593 . . 3  |-  ( ( S  e.  Fin  /\  ( #  |`  S ) : S -onto-> ( # " S
) )  ->  ( #
" S )  e. 
Fin )
188, 16, 17mp2an 667 . 2  |-  ( # " S )  e.  Fin
19 funimass4 5739 . . . 4  |-  ( ( Fun  #  /\  S  C_  dom  # )  ->  (
( # " S ) 
C_  NN  <->  A. x  e.  S  ( # `  x )  e.  NN ) )
2011, 14, 19mp2an 667 . . 3  |-  ( (
# " S ) 
C_  NN  <->  A. x  e.  S  ( # `  x )  e.  NN )
214erdszelem1 27009 . . . 4  |-  ( x  e.  S  <->  ( x  C_  ( 1 ... A
)  /\  ( F  |`  x )  Isom  <  ,  O  ( x ,  ( F " x
) )  /\  A  e.  x ) )
22 ne0i 3640 . . . . . 6  |-  ( A  e.  x  ->  x  =/=  (/) )
23223ad2ant3 1006 . . . . 5  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  x  =/=  (/) )
24 simp1 983 . . . . . . 7  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  x  C_  (
1 ... A ) )
25 ssfi 7529 . . . . . . 7  |-  ( ( ( 1 ... A
)  e.  Fin  /\  x  C_  ( 1 ... A ) )  ->  x  e.  Fin )
261, 24, 25sylancr 658 . . . . . 6  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  x  e.  Fin )
27 hashnncl 12130 . . . . . 6  |-  ( x  e.  Fin  ->  (
( # `  x )  e.  NN  <->  x  =/=  (/) ) )
2826, 27syl 16 . . . . 5  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  ( ( # `
 x )  e.  NN  <->  x  =/=  (/) ) )
2923, 28mpbird 232 . . . 4  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  ( # `  x
)  e.  NN )
3021, 29sylbi 195 . . 3  |-  ( x  e.  S  ->  ( # `
 x )  e.  NN )
3120, 30mprgbir 2784 . 2  |-  ( # " S )  C_  NN
3218, 31pm3.2i 452 1  |-  ( (
# " S )  e.  Fin  /\  ( #
" S )  C_  NN )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   {crab 2717   _Vcvv 2970    u. cun 3323    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   {csn 3874   dom cdm 4836    |` cres 4838   "cima 4839   Fun wfun 5409   -->wf 5411   -onto->wfo 5413   ` cfv 5415    Isom wiso 5416  (class class class)co 6090   Fincfn 7306   1c1 9279   +oocpnf 9411    < clt 9414   NNcn 10318   NN0cn0 10575   ...cfz 11433   #chash 12099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-hash 12100
This theorem is referenced by:  erdszelem5  27013  erdszelem6  27014  erdszelem7  27015  erdszelem8  27016
  Copyright terms: Public domain W3C validator