Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Unicode version

Theorem erdszelem2 28833
Description: Lemma for erdsze 28843. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
Assertion
Ref Expression
erdszelem2  |-  ( (
# " S )  e.  Fin  /\  ( #
" S )  C_  NN )
Distinct variable groups:    y, A    y, F    y, O
Allowed substitution hint:    S( y)

Proof of Theorem erdszelem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fzfi 12085 . . . . 5  |-  ( 1 ... A )  e. 
Fin
2 pwfi 7833 . . . . 5  |-  ( ( 1 ... A )  e.  Fin  <->  ~P (
1 ... A )  e. 
Fin )
31, 2mpbi 208 . . . 4  |-  ~P (
1 ... A )  e. 
Fin
4 erdszelem1.1 . . . . 5  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
5 ssrab2 3581 . . . . 5  |-  { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  C_  ~P ( 1 ... A
)
64, 5eqsstri 3529 . . . 4  |-  S  C_  ~P ( 1 ... A
)
7 ssfi 7759 . . . 4  |-  ( ( ~P ( 1 ... A )  e.  Fin  /\  S  C_  ~P (
1 ... A ) )  ->  S  e.  Fin )
83, 6, 7mp2an 672 . . 3  |-  S  e. 
Fin
9 hashf 12415 . . . . 5  |-  # : _V
--> ( NN0  u.  { +oo } )
10 ffun 5739 . . . . 5  |-  ( # : _V --> ( NN0  u.  { +oo } )  ->  Fun  # )
119, 10ax-mp 5 . . . 4  |-  Fun  #
12 ssv 3519 . . . . 5  |-  S  C_  _V
139fdmi 5742 . . . . 5  |-  dom  #  =  _V
1412, 13sseqtr4i 3532 . . . 4  |-  S  C_  dom  #
15 fores 5810 . . . 4  |-  ( ( Fun  #  /\  S  C_  dom  # )  ->  ( #  |`  S ) : S -onto->
( # " S ) )
1611, 14, 15mp2an 672 . . 3  |-  ( #  |`  S ) : S -onto->
( # " S )
17 fofi 7824 . . 3  |-  ( ( S  e.  Fin  /\  ( #  |`  S ) : S -onto-> ( # " S
) )  ->  ( #
" S )  e. 
Fin )
188, 16, 17mp2an 672 . 2  |-  ( # " S )  e.  Fin
19 funimass4 5924 . . . 4  |-  ( ( Fun  #  /\  S  C_  dom  # )  ->  (
( # " S ) 
C_  NN  <->  A. x  e.  S  ( # `  x )  e.  NN ) )
2011, 14, 19mp2an 672 . . 3  |-  ( (
# " S ) 
C_  NN  <->  A. x  e.  S  ( # `  x )  e.  NN )
214erdszelem1 28832 . . . 4  |-  ( x  e.  S  <->  ( x  C_  ( 1 ... A
)  /\  ( F  |`  x )  Isom  <  ,  O  ( x ,  ( F " x
) )  /\  A  e.  x ) )
22 ne0i 3799 . . . . . 6  |-  ( A  e.  x  ->  x  =/=  (/) )
23223ad2ant3 1019 . . . . 5  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  x  =/=  (/) )
24 simp1 996 . . . . . . 7  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  x  C_  (
1 ... A ) )
25 ssfi 7759 . . . . . . 7  |-  ( ( ( 1 ... A
)  e.  Fin  /\  x  C_  ( 1 ... A ) )  ->  x  e.  Fin )
261, 24, 25sylancr 663 . . . . . 6  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  x  e.  Fin )
27 hashnncl 12439 . . . . . 6  |-  ( x  e.  Fin  ->  (
( # `  x )  e.  NN  <->  x  =/=  (/) ) )
2826, 27syl 16 . . . . 5  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  ( ( # `
 x )  e.  NN  <->  x  =/=  (/) ) )
2923, 28mpbird 232 . . . 4  |-  ( ( x  C_  ( 1 ... A )  /\  ( F  |`  x ) 
Isom  <  ,  O  ( x ,  ( F
" x ) )  /\  A  e.  x
)  ->  ( # `  x
)  e.  NN )
3021, 29sylbi 195 . . 3  |-  ( x  e.  S  ->  ( # `
 x )  e.  NN )
3120, 30mprgbir 2821 . 2  |-  ( # " S )  C_  NN
3218, 31pm3.2i 455 1  |-  ( (
# " S )  e.  Fin  /\  ( #
" S )  C_  NN )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811   _Vcvv 3109    u. cun 3469    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   {csn 4032   dom cdm 5008    |` cres 5010   "cima 5011   Fun wfun 5588   -->wf 5590   -onto->wfo 5592   ` cfv 5594    Isom wiso 5595  (class class class)co 6296   Fincfn 7535   1c1 9510   +oocpnf 9642    < clt 9645   NNcn 10556   NN0cn0 10816   ...cfz 11697   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-hash 12409
This theorem is referenced by:  erdszelem5  28836  erdszelem6  28837  erdszelem7  28838  erdszelem8  28839
  Copyright terms: Public domain W3C validator