Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem10 Unicode version

Theorem erdszelem10 24839
Description: Lemma for erdsze 24841. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.i  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.j  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.t  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
erdszelem.r  |-  ( ph  ->  R  e.  NN )
erdszelem.s  |-  ( ph  ->  S  e.  NN )
erdszelem.m  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
Assertion
Ref Expression
erdszelem10  |-  ( ph  ->  E. m  e.  ( 1 ... N ) ( -.  ( I `
 m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
Distinct variable groups:    x, y    m, n, x, y, F   
n, I, x, y   
n, J, x, y    R, m, x, y    m, N, n, x, y    ph, m, n, x, y    S, m, x, y    T, m
Allowed substitution hints:    R( n)    S( n)    T( x, y, n)    I( m)    J( m)

Proof of Theorem erdszelem10
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 fzfi 11266 . . . . . . . 8  |-  ( 1 ... ( R  - 
1 ) )  e. 
Fin
2 fzfi 11266 . . . . . . . 8  |-  ( 1 ... ( S  - 
1 ) )  e. 
Fin
3 xpfi 7337 . . . . . . . 8  |-  ( ( ( 1 ... ( R  -  1 ) )  e.  Fin  /\  ( 1 ... ( S  -  1 ) )  e.  Fin )  ->  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  e.  Fin )
41, 2, 3mp2an 654 . . . . . . 7  |-  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  e. 
Fin
5 ssdomg 7112 . . . . . . 7  |-  ( ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  e.  Fin  ->  ( ran  T  C_  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  ran  T  ~<_  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) ) )
64, 5ax-mp 8 . . . . . 6  |-  ( ran 
T  C_  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  ran  T  ~<_  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )
7 domnsym 7192 . . . . . 6  |-  ( ran 
T  ~<_  ( ( 1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  -.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
86, 7syl 16 . . . . 5  |-  ( ran 
T  C_  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ->  -.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
9 erdszelem.m . . . . . . . 8  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
10 hashxp 11652 . . . . . . . . . 10  |-  ( ( ( 1 ... ( R  -  1 ) )  e.  Fin  /\  ( 1 ... ( S  -  1 ) )  e.  Fin )  ->  ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( R  -  1 ) ) )  x.  ( # `  (
1 ... ( S  - 
1 ) ) ) ) )
111, 2, 10mp2an 654 . . . . . . . . 9  |-  ( # `  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )  =  ( (
# `  ( 1 ... ( R  -  1 ) ) )  x.  ( # `  (
1 ... ( S  - 
1 ) ) ) )
12 erdszelem.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  NN )
13 nnm1nn0 10217 . . . . . . . . . . 11  |-  ( R  e.  NN  ->  ( R  -  1 )  e.  NN0 )
14 hashfz1 11585 . . . . . . . . . . 11  |-  ( ( R  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( R  -  1 ) ) )  =  ( R  -  1 ) )
1512, 13, 143syl 19 . . . . . . . . . 10  |-  ( ph  ->  ( # `  (
1 ... ( R  - 
1 ) ) )  =  ( R  - 
1 ) )
16 erdszelem.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  NN )
17 nnm1nn0 10217 . . . . . . . . . . 11  |-  ( S  e.  NN  ->  ( S  -  1 )  e.  NN0 )
18 hashfz1 11585 . . . . . . . . . . 11  |-  ( ( S  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( S  -  1 ) ) )  =  ( S  -  1 ) )
1916, 17, 183syl 19 . . . . . . . . . 10  |-  ( ph  ->  ( # `  (
1 ... ( S  - 
1 ) ) )  =  ( S  - 
1 ) )
2015, 19oveq12d 6058 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  (
1 ... ( R  - 
1 ) ) )  x.  ( # `  (
1 ... ( S  - 
1 ) ) ) )  =  ( ( R  -  1 )  x.  ( S  - 
1 ) ) )
2111, 20syl5eq 2448 . . . . . . . 8  |-  ( ph  ->  ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  =  ( ( R  -  1 )  x.  ( S  - 
1 ) ) )
22 erdsze.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
2322nnnn0d 10230 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
24 hashfz1 11585 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
2523, 24syl 16 . . . . . . . 8  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
269, 21, 253brtr4d 4202 . . . . . . 7  |-  ( ph  ->  ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  <  ( # `  ( 1 ... N
) ) )
27 fzfid 11267 . . . . . . . 8  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
28 hashsdom 11610 . . . . . . . 8  |-  ( ( ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( # `  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) )  <  ( # `  (
1 ... N ) )  <-> 
( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ( 1 ... N
) ) )
294, 27, 28sylancr 645 . . . . . . 7  |-  ( ph  ->  ( ( # `  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )  <  ( # `  ( 1 ... N
) )  <->  ( (
1 ... ( R  - 
1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  ~<  (
1 ... N ) ) )
3026, 29mpbid 202 . . . . . 6  |-  ( ph  ->  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ( 1 ... N
) )
31 erdsze.f . . . . . . . 8  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
32 erdszelem.i . . . . . . . 8  |-  I  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
33 erdszelem.j . . . . . . . 8  |-  J  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
34 erdszelem.t . . . . . . . 8  |-  T  =  ( n  e.  ( 1 ... N ) 
|->  <. ( I `  n ) ,  ( J `  n )
>. )
3522, 31, 32, 33, 34erdszelem9 24838 . . . . . . 7  |-  ( ph  ->  T : ( 1 ... N ) -1-1-> ( NN  X.  NN ) )
36 f1f1orn 5644 . . . . . . 7  |-  ( T : ( 1 ... N ) -1-1-> ( NN 
X.  NN )  ->  T : ( 1 ... N ) -1-1-onto-> ran  T )
37 ovex 6065 . . . . . . . 8  |-  ( 1 ... N )  e. 
_V
3837f1oen 7087 . . . . . . 7  |-  ( T : ( 1 ... N ) -1-1-onto-> ran  T  ->  (
1 ... N )  ~~  ran  T )
3935, 36, 383syl 19 . . . . . 6  |-  ( ph  ->  ( 1 ... N
)  ~~  ran  T )
40 sdomentr 7200 . . . . . 6  |-  ( ( ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ( 1 ... N
)  /\  ( 1 ... N )  ~~  ran  T )  ->  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
4130, 39, 40syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) 
~<  ran  T )
428, 41nsyl3 113 . . . 4  |-  ( ph  ->  -.  ran  T  C_  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )
43 nss 3366 . . . . 5  |-  ( -. 
ran  T  C_  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  E. s
( s  e.  ran  T  /\  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) ) )
44 df-rex 2672 . . . . 5  |-  ( E. s  e.  ran  T  -.  s  e.  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  <->  E. s ( s  e. 
ran  T  /\  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) ) )
4543, 44bitr4i 244 . . . 4  |-  ( -. 
ran  T  C_  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  E. s  e.  ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) ) )
4642, 45sylib 189 . . 3  |-  ( ph  ->  E. s  e.  ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )
47 f1fn 5599 . . . 4  |-  ( T : ( 1 ... N ) -1-1-> ( NN 
X.  NN )  ->  T  Fn  ( 1 ... N ) )
48 eleq1 2464 . . . . . 6  |-  ( s  =  ( T `  m )  ->  (
s  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  ( T `  m )  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) ) )
4948notbid 286 . . . . 5  |-  ( s  =  ( T `  m )  ->  ( -.  s  e.  (
( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  <->  -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
5049rexrn 5831 . . . 4  |-  ( T  Fn  ( 1 ... N )  ->  ( E. s  e.  ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) )  <->  E. m  e.  (
1 ... N )  -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
5135, 47, 503syl 19 . . 3  |-  ( ph  ->  ( E. s  e. 
ran  T  -.  s  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  <->  E. m  e.  (
1 ... N )  -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
5246, 51mpbid 202 . 2  |-  ( ph  ->  E. m  e.  ( 1 ... N )  -.  ( T `  m )  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  - 
1 ) ) ) )
53 fveq2 5687 . . . . . . . . . 10  |-  ( n  =  m  ->  (
I `  n )  =  ( I `  m ) )
54 fveq2 5687 . . . . . . . . . 10  |-  ( n  =  m  ->  ( J `  n )  =  ( J `  m ) )
5553, 54opeq12d 3952 . . . . . . . . 9  |-  ( n  =  m  ->  <. (
I `  n ) ,  ( J `  n ) >.  =  <. ( I `  m ) ,  ( J `  m ) >. )
56 opex 4387 . . . . . . . . 9  |-  <. (
I `  m ) ,  ( J `  m ) >.  e.  _V
5755, 34, 56fvmpt 5765 . . . . . . . 8  |-  ( m  e.  ( 1 ... N )  ->  ( T `  m )  =  <. ( I `  m ) ,  ( J `  m )
>. )
5857adantl 453 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  ( T `  m )  =  <. ( I `  m ) ,  ( J `  m )
>. )
5958eleq1d 2470 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  (
( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  <. ( I `
 m ) ,  ( J `  m
) >.  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) ) ) )
60 opelxp 4867 . . . . . 6  |-  ( <.
( I `  m
) ,  ( J `
 m ) >.  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  <-> 
( ( I `  m )  e.  ( 1 ... ( R  -  1 ) )  /\  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
6159, 60syl6bb 253 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  (
( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  ( (
I `  m )  e.  ( 1 ... ( R  -  1 ) )  /\  ( J `
 m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
6261notbid 286 . . . 4  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  ( -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  -.  (
( I `  m
)  e.  ( 1 ... ( R  - 
1 ) )  /\  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
63 ianor 475 . . . 4  |-  ( -.  ( ( I `  m )  e.  ( 1 ... ( R  -  1 ) )  /\  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) )  <->  ( -.  (
I `  m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
6462, 63syl6bb 253 . . 3  |-  ( (
ph  /\  m  e.  ( 1 ... N
) )  ->  ( -.  ( T `  m
)  e.  ( ( 1 ... ( R  -  1 ) )  X.  ( 1 ... ( S  -  1 ) ) )  <->  ( -.  ( I `  m
)  e.  ( 1 ... ( R  - 
1 ) )  \/ 
-.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
6564rexbidva 2683 . 2  |-  ( ph  ->  ( E. m  e.  ( 1 ... N
)  -.  ( T `
 m )  e.  ( ( 1 ... ( R  -  1 ) )  X.  (
1 ... ( S  - 
1 ) ) )  <->  E. m  e.  (
1 ... N ) ( -.  ( I `  m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `
 m )  e.  ( 1 ... ( S  -  1 ) ) ) ) )
6652, 65mpbid 202 1  |-  ( ph  ->  E. m  e.  ( 1 ... N ) ( -.  ( I `
 m )  e.  ( 1 ... ( R  -  1 ) )  \/  -.  ( J `  m )  e.  ( 1 ... ( S  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   E.wrex 2667   {crab 2670    C_ wss 3280   ~Pcpw 3759   <.cop 3777   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   ran crn 4838    |` cres 4839   "cima 4840    Fn wfn 5408   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414  (class class class)co 6040    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067   Fincfn 7068   supcsup 7403   RRcr 8945   1c1 8947    x. cmul 8951    < clt 9076    - cmin 9247   NNcn 9956   NN0cn0 10177   ...cfz 10999   #chash 11573
This theorem is referenced by:  erdszelem11  24840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574
  Copyright terms: Public domain W3C validator