Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem1 Structured version   Unicode version

Theorem erdszelem1 26927
Description: Lemma for erdsze 26938. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
Assertion
Ref Expression
erdszelem1  |-  ( X  e.  S  <->  ( X  C_  ( 1 ... A
)  /\  ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) )  /\  A  e.  X ) )
Distinct variable groups:    y, A    y, F    y, O    y, X
Allowed substitution hint:    S( y)

Proof of Theorem erdszelem1
StepHypRef Expression
1 ovex 6105 . . . 4  |-  ( 1 ... A )  e. 
_V
21elpw2 4444 . . 3  |-  ( X  e.  ~P ( 1 ... A )  <->  X  C_  (
1 ... A ) )
32anbi1i 688 . 2  |-  ( ( X  e.  ~P (
1 ... A )  /\  ( ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) )  /\  A  e.  X ) )  <->  ( X  C_  ( 1 ... A
)  /\  ( ( F  |`  X )  Isom  <  ,  O  ( X ,  ( F " X ) )  /\  A  e.  X )
) )
4 reseq2 5092 . . . . . 6  |-  ( y  =  X  ->  ( F  |`  y )  =  ( F  |`  X ) )
5 isoeq1 5997 . . . . . 6  |-  ( ( F  |`  y )  =  ( F  |`  X )  ->  (
( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  <->  ( F  |`  X )  Isom  <  ,  O  ( y ,  ( F " y
) ) ) )
64, 5syl 16 . . . . 5  |-  ( y  =  X  ->  (
( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  <->  ( F  |`  X )  Isom  <  ,  O  ( y ,  ( F " y
) ) ) )
7 isoeq4 6000 . . . . 5  |-  ( y  =  X  ->  (
( F  |`  X ) 
Isom  <  ,  O  ( y ,  ( F
" y ) )  <-> 
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" y ) ) ) )
8 imaeq2 5153 . . . . . 6  |-  ( y  =  X  ->  ( F " y )  =  ( F " X
) )
9 isoeq5 6001 . . . . . 6  |-  ( ( F " y )  =  ( F " X )  ->  (
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" y ) )  <-> 
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) ) ) )
108, 9syl 16 . . . . 5  |-  ( y  =  X  ->  (
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" y ) )  <-> 
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) ) ) )
116, 7, 103bitrd 279 . . . 4  |-  ( y  =  X  ->  (
( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  <->  ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) ) ) )
12 eleq2 2494 . . . 4  |-  ( y  =  X  ->  ( A  e.  y  <->  A  e.  X ) )
1311, 12anbi12d 703 . . 3  |-  ( y  =  X  ->  (
( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y )  <->  ( ( F  |`  X )  Isom  <  ,  O  ( X ,  ( F " X ) )  /\  A  e.  X )
) )
14 erdszelem1.1 . . 3  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
1513, 14elrab2 3108 . 2  |-  ( X  e.  S  <->  ( X  e.  ~P ( 1 ... A )  /\  (
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) )  /\  A  e.  X
) ) )
16 3anass 962 . 2  |-  ( ( X  C_  ( 1 ... A )  /\  ( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) )  /\  A  e.  X
)  <->  ( X  C_  ( 1 ... A
)  /\  ( ( F  |`  X )  Isom  <  ,  O  ( X ,  ( F " X ) )  /\  A  e.  X )
) )
173, 15, 163bitr4i 277 1  |-  ( X  e.  S  <->  ( X  C_  ( 1 ... A
)  /\  ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) )  /\  A  e.  X ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   {crab 2709    C_ wss 3316   ~Pcpw 3848    |` cres 4829   "cima 4830    Isom wiso 5407  (class class class)co 6080   1c1 9271    < clt 9406   ...cfz 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-ov 6083
This theorem is referenced by:  erdszelem2  26928  erdszelem4  26930  erdszelem7  26933  erdszelem8  26934
  Copyright terms: Public domain W3C validator