Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem1 Structured version   Unicode version

Theorem erdszelem1 27031
Description: Lemma for erdsze 27042. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
Assertion
Ref Expression
erdszelem1  |-  ( X  e.  S  <->  ( X  C_  ( 1 ... A
)  /\  ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) )  /\  A  e.  X ) )
Distinct variable groups:    y, A    y, F    y, O    y, X
Allowed substitution hint:    S( y)

Proof of Theorem erdszelem1
StepHypRef Expression
1 ovex 6111 . . . 4  |-  ( 1 ... A )  e. 
_V
21elpw2 4451 . . 3  |-  ( X  e.  ~P ( 1 ... A )  <->  X  C_  (
1 ... A ) )
32anbi1i 695 . 2  |-  ( ( X  e.  ~P (
1 ... A )  /\  ( ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) )  /\  A  e.  X ) )  <->  ( X  C_  ( 1 ... A
)  /\  ( ( F  |`  X )  Isom  <  ,  O  ( X ,  ( F " X ) )  /\  A  e.  X )
) )
4 reseq2 5100 . . . . . 6  |-  ( y  =  X  ->  ( F  |`  y )  =  ( F  |`  X ) )
5 isoeq1 6005 . . . . . 6  |-  ( ( F  |`  y )  =  ( F  |`  X )  ->  (
( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  <->  ( F  |`  X )  Isom  <  ,  O  ( y ,  ( F " y
) ) ) )
64, 5syl 16 . . . . 5  |-  ( y  =  X  ->  (
( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  <->  ( F  |`  X )  Isom  <  ,  O  ( y ,  ( F " y
) ) ) )
7 isoeq4 6008 . . . . 5  |-  ( y  =  X  ->  (
( F  |`  X ) 
Isom  <  ,  O  ( y ,  ( F
" y ) )  <-> 
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" y ) ) ) )
8 imaeq2 5160 . . . . . 6  |-  ( y  =  X  ->  ( F " y )  =  ( F " X
) )
9 isoeq5 6009 . . . . . 6  |-  ( ( F " y )  =  ( F " X )  ->  (
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" y ) )  <-> 
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) ) ) )
108, 9syl 16 . . . . 5  |-  ( y  =  X  ->  (
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" y ) )  <-> 
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) ) ) )
116, 7, 103bitrd 279 . . . 4  |-  ( y  =  X  ->  (
( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  <->  ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) ) ) )
12 eleq2 2499 . . . 4  |-  ( y  =  X  ->  ( A  e.  y  <->  A  e.  X ) )
1311, 12anbi12d 710 . . 3  |-  ( y  =  X  ->  (
( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y )  <->  ( ( F  |`  X )  Isom  <  ,  O  ( X ,  ( F " X ) )  /\  A  e.  X )
) )
14 erdszelem1.1 . . 3  |-  S  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
1513, 14elrab2 3114 . 2  |-  ( X  e.  S  <->  ( X  e.  ~P ( 1 ... A )  /\  (
( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) )  /\  A  e.  X
) ) )
16 3anass 969 . 2  |-  ( ( X  C_  ( 1 ... A )  /\  ( F  |`  X ) 
Isom  <  ,  O  ( X ,  ( F
" X ) )  /\  A  e.  X
)  <->  ( X  C_  ( 1 ... A
)  /\  ( ( F  |`  X )  Isom  <  ,  O  ( X ,  ( F " X ) )  /\  A  e.  X )
) )
173, 15, 163bitr4i 277 1  |-  ( X  e.  S  <->  ( X  C_  ( 1 ... A
)  /\  ( F  |`  X )  Isom  <  ,  O  ( X , 
( F " X
) )  /\  A  e.  X ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {crab 2714    C_ wss 3323   ~Pcpw 3855    |` cres 4837   "cima 4838    Isom wiso 5414  (class class class)co 6086   1c1 9275    < clt 9410   ...cfz 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6089
This theorem is referenced by:  erdszelem2  27032  erdszelem4  27034  erdszelem7  27037  erdszelem8  27038
  Copyright terms: Public domain W3C validator