Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2 Unicode version

Theorem erdsze2 24844
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 24841 to "sequences" indexed by an arbitrary subset of  RR, which can be infinite. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r  |-  ( ph  ->  R  e.  NN )
erdsze2.s  |-  ( ph  ->  S  e.  NN )
erdsze2.f  |-  ( ph  ->  F : A -1-1-> RR )
erdsze2.a  |-  ( ph  ->  A  C_  RR )
erdsze2.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
Assertion
Ref Expression
erdsze2  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    A, s    F, s    R, s    S, s    ph, s

Proof of Theorem erdsze2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 erdsze2.r . . 3  |-  ( ph  ->  R  e.  NN )
2 erdsze2.s . . 3  |-  ( ph  ->  S  e.  NN )
3 erdsze2.f . . 3  |-  ( ph  ->  F : A -1-1-> RR )
4 erdsze2.a . . 3  |-  ( ph  ->  A  C_  RR )
5 eqid 2404 . . 3  |-  ( ( R  -  1 )  x.  ( S  - 
1 ) )  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
6 erdsze2.l . . 3  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
71, 2, 3, 4, 5, 6erdsze2lem1 24842 . 2  |-  ( ph  ->  E. f ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )
81adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  R  e.  NN )
92adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  S  e.  NN )
103adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  F : A -1-1-> RR )
114adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  A  C_  RR )
126adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
13 simprl 733 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  - 
1 ) )  +  1 ) ) -1-1-> A
)
14 simprr 734 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) )
158, 9, 10, 11, 5, 12, 13, 14erdsze2lem2 24843 . 2  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
167, 15exlimddv 1645 1  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    e. wcel 1721   E.wrex 2667    C_ wss 3280   ~Pcpw 3759   class class class wbr 4172   `'ccnv 4836   ran crn 4838    |` cres 4839   "cima 4840   -1-1->wf1 5410   ` cfv 5413    Isom wiso 5414  (class class class)co 6040   RRcr 8945   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   NNcn 9956   ...cfz 10999   #chash 11573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574
  Copyright terms: Public domain W3C validator