Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2 Structured version   Unicode version

Theorem erdsze2 27224
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 27221 to "sequences" indexed by an arbitrary subset of  RR, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r  |-  ( ph  ->  R  e.  NN )
erdsze2.s  |-  ( ph  ->  S  e.  NN )
erdsze2.f  |-  ( ph  ->  F : A -1-1-> RR )
erdsze2.a  |-  ( ph  ->  A  C_  RR )
erdsze2.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
Assertion
Ref Expression
erdsze2  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    A, s    F, s    R, s    S, s    ph, s

Proof of Theorem erdsze2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 erdsze2.r . . 3  |-  ( ph  ->  R  e.  NN )
2 erdsze2.s . . 3  |-  ( ph  ->  S  e.  NN )
3 erdsze2.f . . 3  |-  ( ph  ->  F : A -1-1-> RR )
4 erdsze2.a . . 3  |-  ( ph  ->  A  C_  RR )
5 eqid 2451 . . 3  |-  ( ( R  -  1 )  x.  ( S  - 
1 ) )  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
6 erdsze2.l . . 3  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
71, 2, 3, 4, 5, 6erdsze2lem1 27222 . 2  |-  ( ph  ->  E. f ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )
81adantr 465 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  R  e.  NN )
92adantr 465 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  S  e.  NN )
103adantr 465 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  F : A -1-1-> RR )
114adantr 465 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  A  C_  RR )
126adantr 465 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
13 simprl 755 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  - 
1 ) )  +  1 ) ) -1-1-> A
)
14 simprr 756 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) )
158, 9, 10, 11, 5, 12, 13, 14erdsze2lem2 27223 . 2  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
167, 15exlimddv 1693 1  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    e. wcel 1758   E.wrex 2794    C_ wss 3423   ~Pcpw 3955   class class class wbr 4387   `'ccnv 4934   ran crn 4936    |` cres 4937   "cima 4938   -1-1->wf1 5510   ` cfv 5513    Isom wiso 5514  (class class class)co 6187   RRcr 9379   1c1 9381    + caddc 9383    x. cmul 9385    < clt 9516    <_ cle 9517    - cmin 9693   NNcn 10420   ...cfz 11535   #chash 12201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457  ax-pre-sup 9458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-int 4224  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-se 4775  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-isom 5522  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-1o 7017  df-2o 7018  df-oadd 7021  df-er 7198  df-map 7313  df-en 7408  df-dom 7409  df-sdom 7410  df-fin 7411  df-sup 7789  df-oi 7822  df-card 8207  df-cda 8435  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-nn 10421  df-n0 10678  df-z 10745  df-uz 10960  df-fz 11536  df-hash 12202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator