Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Structured version   Unicode version

Theorem erdsze 27042
Description: The Erdős-Szekeres theorem. For any injective sequence  F on the reals of length at least 
( R  -  1 )  x.  ( S  -  1 )  +  1, there is either a subsequence of length at least  R on which  F is increasing (i.e. a  <  ,  < order isomorphism) or a subsequence of length at least  S on which  F is decreasing (i.e. a  <  ,  `'  < order isomorphism, recalling that  `'  < is the greater-than relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdsze.r  |-  ( ph  ->  R  e.  NN )
erdsze.s  |-  ( ph  ->  S  e.  NN )
erdsze.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
Assertion
Ref Expression
erdsze  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    F, s    R, s    N, s    ph, s    S, s

Proof of Theorem erdsze
Dummy variables  w  x  y  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2  |-  ( ph  ->  N  e.  NN )
2 erdsze.f . 2  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
3 reseq2 5100 . . . . . . . . . 10  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
4 isoeq1 6005 . . . . . . . . . 10  |-  ( ( F  |`  w )  =  ( F  |`  y )  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) ) ) )
53, 4syl 16 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) ) ) )
6 isoeq4 6008 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) ) ) )
7 imaeq2 5160 . . . . . . . . . 10  |-  ( w  =  y  ->  ( F " w )  =  ( F " y
) )
8 isoeq5 6009 . . . . . . . . . 10  |-  ( ( F " w )  =  ( F "
y )  ->  (
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
97, 8syl 16 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
105, 6, 93bitrd 279 . . . . . . . 8  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
11 elequ2 1761 . . . . . . . 8  |-  ( w  =  y  ->  (
z  e.  w  <->  z  e.  y ) )
1210, 11anbi12d 710 . . . . . . 7  |-  ( w  =  y  ->  (
( ( F  |`  w )  Isom  <  ,  <  ( w ,  ( F " w
) )  /\  z  e.  w )  <->  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) ) )
1312cbvrabv 2966 . . . . . 6  |-  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) }  =  {
y  e.  ~P (
1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }
14 oveq2 6094 . . . . . . . 8  |-  ( z  =  x  ->  (
1 ... z )  =  ( 1 ... x
) )
1514pweqd 3860 . . . . . . 7  |-  ( z  =  x  ->  ~P ( 1 ... z
)  =  ~P (
1 ... x ) )
16 elequ1 1759 . . . . . . . 8  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
1716anbi2d 703 . . . . . . 7  |-  ( z  =  x  ->  (
( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) ) )
1815, 17rabeqbidv 2962 . . . . . 6  |-  ( z  =  x  ->  { y  e.  ~P ( 1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } )
1913, 18syl5eq 2482 . . . . 5  |-  ( z  =  x  ->  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) }  =  {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } )
2019imaeq2d 5164 . . . 4  |-  ( z  =  x  ->  ( #
" { w  e. 
~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) } )  =  ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) )
2120supeq1d 7688 . . 3  |-  ( z  =  x  ->  sup ( ( # " {
w  e.  ~P (
1 ... z )  |  ( ( F  |`  w )  Isom  <  ,  <  ( w ,  ( F " w
) )  /\  z  e.  w ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
2221cbvmptv 4378 . 2  |-  ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
)  =  ( x  e.  ( 1 ... N )  |->  sup (
( # " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
23 isoeq1 6005 . . . . . . . . . 10  |-  ( ( F  |`  w )  =  ( F  |`  y )  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( w ,  ( F " w
) ) ) )
243, 23syl 16 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( w ,  ( F " w
) ) ) )
25 isoeq4 6008 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " w
) ) ) )
26 isoeq5 6009 . . . . . . . . . 10  |-  ( ( F " w )  =  ( F "
y )  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( y ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
277, 26syl 16 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( y ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
2824, 25, 273bitrd 279 . . . . . . . 8  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
2928, 11anbi12d 710 . . . . . . 7  |-  ( w  =  y  ->  (
( ( F  |`  w )  Isom  <  ,  `'  <  ( w ,  ( F " w
) )  /\  z  e.  w )  <->  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F "
y ) )  /\  z  e.  y )
) )
3029cbvrabv 2966 . . . . . 6  |-  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) }  =  { y  e.  ~P ( 1 ... z
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  z  e.  y ) }
3116anbi2d 703 . . . . . . 7  |-  ( z  =  x  ->  (
( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  z  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F "
y ) )  /\  x  e.  y )
) )
3215, 31rabeqbidv 2962 . . . . . 6  |-  ( z  =  x  ->  { y  e.  ~P ( 1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } )
3330, 32syl5eq 2482 . . . . 5  |-  ( z  =  x  ->  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } )
3433imaeq2d 5164 . . . 4  |-  ( z  =  x  ->  ( #
" { w  e. 
~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } )  =  ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) )
3534supeq1d 7688 . . 3  |-  ( z  =  x  ->  sup ( ( # " {
w  e.  ~P (
1 ... z )  |  ( ( F  |`  w )  Isom  <  ,  `'  <  ( w ,  ( F " w
) )  /\  z  e.  w ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
3635cbvmptv 4378 . 2  |-  ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) )  =  ( x  e.  ( 1 ... N )  |->  sup (
( # " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
37 eqid 2438 . 2  |-  ( n  e.  ( 1 ... N )  |->  <. (
( z  e.  ( 1 ... N ) 
|->  sup ( ( # " { w  e.  ~P ( 1 ... z
)  |  ( ( F  |`  w )  Isom  <  ,  <  (
w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
) `  n ) ,  ( ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) ) `  n )
>. )  =  (
n  e.  ( 1 ... N )  |->  <.
( ( z  e.  ( 1 ... N
)  |->  sup ( ( # " { w  e.  ~P ( 1 ... z
)  |  ( ( F  |`  w )  Isom  <  ,  <  (
w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
) `  n ) ,  ( ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) ) `  n )
>. )
38 erdsze.r . 2  |-  ( ph  ->  R  e.  NN )
39 erdsze.s . 2  |-  ( ph  ->  S  e.  NN )
40 erdsze.l . 2  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 27041 1  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2711   {crab 2714   ~Pcpw 3855   <.cop 3878   class class class wbr 4287    e. cmpt 4345   `'ccnv 4834    |` cres 4837   "cima 4838   -1-1->wf1 5410   ` cfv 5413    Isom wiso 5414  (class class class)co 6086   supcsup 7682   RRcr 9273   1c1 9275    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   NNcn 10314   ...cfz 11429   #chash 12095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-hash 12096
This theorem is referenced by:  erdsze2lem2  27044
  Copyright terms: Public domain W3C validator