Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Structured version   Unicode version

Theorem erdsze 29499
Description: The Erdős-Szekeres theorem. For any injective sequence  F on the reals of length at least 
( R  -  1 )  x.  ( S  -  1 )  +  1, there is either a subsequence of length at least  R on which  F is increasing (i.e. a  <  ,  < order isomorphism) or a subsequence of length at least  S on which  F is decreasing (i.e. a  <  ,  `'  < order isomorphism, recalling that  `'  < is the greater-than relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdsze.r  |-  ( ph  ->  R  e.  NN )
erdsze.s  |-  ( ph  ->  S  e.  NN )
erdsze.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
Assertion
Ref Expression
erdsze  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    F, s    R, s    N, s    ph, s    S, s

Proof of Theorem erdsze
Dummy variables  w  x  y  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2  |-  ( ph  ->  N  e.  NN )
2 erdsze.f . 2  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
3 reseq2 5089 . . . . . . . . . 10  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
4 isoeq1 6198 . . . . . . . . . 10  |-  ( ( F  |`  w )  =  ( F  |`  y )  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) ) ) )
53, 4syl 17 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) ) ) )
6 isoeq4 6201 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) ) ) )
7 imaeq2 5153 . . . . . . . . . 10  |-  ( w  =  y  ->  ( F " w )  =  ( F " y
) )
8 isoeq5 6202 . . . . . . . . . 10  |-  ( ( F " w )  =  ( F "
y )  ->  (
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
97, 8syl 17 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
105, 6, 93bitrd 279 . . . . . . . 8  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  <-> 
( F  |`  y
)  Isom  <  ,  <  ( y ,  ( F
" y ) ) ) )
11 elequ2 1847 . . . . . . . 8  |-  ( w  =  y  ->  (
z  e.  w  <->  z  e.  y ) )
1210, 11anbi12d 709 . . . . . . 7  |-  ( w  =  y  ->  (
( ( F  |`  w )  Isom  <  ,  <  ( w ,  ( F " w
) )  /\  z  e.  w )  <->  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) ) )
1312cbvrabv 3058 . . . . . 6  |-  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) }  =  {
y  e.  ~P (
1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }
14 oveq2 6286 . . . . . . . 8  |-  ( z  =  x  ->  (
1 ... z )  =  ( 1 ... x
) )
1514pweqd 3960 . . . . . . 7  |-  ( z  =  x  ->  ~P ( 1 ... z
)  =  ~P (
1 ... x ) )
16 elequ1 1845 . . . . . . . 8  |-  ( z  =  x  ->  (
z  e.  y  <->  x  e.  y ) )
1716anbi2d 702 . . . . . . 7  |-  ( z  =  x  ->  (
( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) ) )
1815, 17rabeqbidv 3054 . . . . . 6  |-  ( z  =  x  ->  { y  e.  ~P ( 1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  <  (
y ,  ( F
" y ) )  /\  x  e.  y ) } )
1913, 18syl5eq 2455 . . . . 5  |-  ( z  =  x  ->  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) }  =  {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } )
2019imaeq2d 5157 . . . 4  |-  ( z  =  x  ->  ( #
" { w  e. 
~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) } )  =  ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) )
2120supeq1d 7939 . . 3  |-  ( z  =  x  ->  sup ( ( # " {
w  e.  ~P (
1 ... z )  |  ( ( F  |`  w )  Isom  <  ,  <  ( w ,  ( F " w
) )  /\  z  e.  w ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
2221cbvmptv 4487 . 2  |-  ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  <  ( w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
)  =  ( x  e.  ( 1 ... N )  |->  sup (
( # " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
23 isoeq1 6198 . . . . . . . . . 10  |-  ( ( F  |`  w )  =  ( F  |`  y )  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( w ,  ( F " w
) ) ) )
243, 23syl 17 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( w ,  ( F " w
) ) ) )
25 isoeq4 6201 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " w
) ) ) )
26 isoeq5 6202 . . . . . . . . . 10  |-  ( ( F " w )  =  ( F "
y )  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( y ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
277, 26syl 17 . . . . . . . . 9  |-  ( w  =  y  ->  (
( F  |`  y
)  Isom  <  ,  `'  <  ( y ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
2824, 25, 273bitrd 279 . . . . . . . 8  |-  ( w  =  y  ->  (
( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  <->  ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) ) ) )
2928, 11anbi12d 709 . . . . . . 7  |-  ( w  =  y  ->  (
( ( F  |`  w )  Isom  <  ,  `'  <  ( w ,  ( F " w
) )  /\  z  e.  w )  <->  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F "
y ) )  /\  z  e.  y )
) )
3029cbvrabv 3058 . . . . . 6  |-  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) }  =  { y  e.  ~P ( 1 ... z
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  z  e.  y ) }
3116anbi2d 702 . . . . . . 7  |-  ( z  =  x  ->  (
( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  z  e.  y )  <->  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F "
y ) )  /\  x  e.  y )
) )
3215, 31rabeqbidv 3054 . . . . . 6  |-  ( z  =  x  ->  { y  e.  ~P ( 1 ... z )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  z  e.  y ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } )
3330, 32syl5eq 2455 . . . . 5  |-  ( z  =  x  ->  { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) }  =  { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F
" y ) )  /\  x  e.  y ) } )
3433imaeq2d 5157 . . . 4  |-  ( z  =  x  ->  ( #
" { w  e. 
~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } )  =  ( # " {
y  e.  ~P (
1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) )
3534supeq1d 7939 . . 3  |-  ( z  =  x  ->  sup ( ( # " {
w  e.  ~P (
1 ... z )  |  ( ( F  |`  w )  Isom  <  ,  `'  <  ( w ,  ( F " w
) )  /\  z  e.  w ) } ) ,  RR ,  <  )  =  sup ( (
# " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
3635cbvmptv 4487 . 2  |-  ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) )  =  ( x  e.  ( 1 ... N )  |->  sup (
( # " { y  e.  ~P ( 1 ... x )  |  ( ( F  |`  y )  Isom  <  ,  `'  <  ( y ,  ( F " y
) )  /\  x  e.  y ) } ) ,  RR ,  <  ) )
37 eqid 2402 . 2  |-  ( n  e.  ( 1 ... N )  |->  <. (
( z  e.  ( 1 ... N ) 
|->  sup ( ( # " { w  e.  ~P ( 1 ... z
)  |  ( ( F  |`  w )  Isom  <  ,  <  (
w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
) `  n ) ,  ( ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) ) `  n )
>. )  =  (
n  e.  ( 1 ... N )  |->  <.
( ( z  e.  ( 1 ... N
)  |->  sup ( ( # " { w  e.  ~P ( 1 ... z
)  |  ( ( F  |`  w )  Isom  <  ,  <  (
w ,  ( F
" w ) )  /\  z  e.  w
) } ) ,  RR ,  <  )
) `  n ) ,  ( ( z  e.  ( 1 ... N )  |->  sup (
( # " { w  e.  ~P ( 1 ... z )  |  ( ( F  |`  w
)  Isom  <  ,  `'  <  ( w ,  ( F " w ) )  /\  z  e.  w ) } ) ,  RR ,  <  ) ) `  n )
>. )
38 erdsze.r . 2  |-  ( ph  ->  R  e.  NN )
39 erdsze.s . 2  |-  ( ph  ->  S  e.  NN )
40 erdsze.l . 2  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  N )
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 29498 1  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   E.wrex 2755   {crab 2758   ~Pcpw 3955   <.cop 3978   class class class wbr 4395    |-> cmpt 4453   `'ccnv 4822    |` cres 4825   "cima 4826   -1-1->wf1 5566   ` cfv 5569    Isom wiso 5570  (class class class)co 6278   supcsup 7934   RRcr 9521   1c1 9523    x. cmul 9527    < clt 9658    <_ cle 9659    - cmin 9841   NNcn 10576   ...cfz 11726   #chash 12452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-hash 12453
This theorem is referenced by:  erdsze2lem2  29501
  Copyright terms: Public domain W3C validator