MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdisj Unicode version

Theorem erdisj 6911
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
erdisj  |-  ( R  Er  X  ->  ( [ A ] R  =  [ B ] R  \/  ( [ A ] R  i^i  [ B ] R )  =  (/) ) )

Proof of Theorem erdisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neq0 3598 . . . 4  |-  ( -.  ( [ A ] R  i^i  [ B ] R )  =  (/)  <->  E. x  x  e.  ( [ A ] R  i^i  [ B ] R ) )
2 simpl 444 . . . . . . 7  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  R  Er  X
)
3 elin 3490 . . . . . . . . . . 11  |-  ( x  e.  ( [ A ] R  i^i  [ B ] R )  <->  ( x  e.  [ A ] R  /\  x  e.  [ B ] R ) )
43simplbi 447 . . . . . . . . . 10  |-  ( x  e.  ( [ A ] R  i^i  [ B ] R )  ->  x  e.  [ A ] R
)
54adantl 453 . . . . . . . . 9  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  x  e.  [ A ] R )
6 vex 2919 . . . . . . . . . 10  |-  x  e. 
_V
7 ecexr 6869 . . . . . . . . . . 11  |-  ( x  e.  [ A ] R  ->  A  e.  _V )
85, 7syl 16 . . . . . . . . . 10  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  A  e.  _V )
9 elecg 6902 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x  e.  [ A ] R  <->  A R x ) )
106, 8, 9sylancr 645 . . . . . . . . 9  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  ( x  e. 
[ A ] R  <->  A R x ) )
115, 10mpbid 202 . . . . . . . 8  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  A R x )
123simprbi 451 . . . . . . . . . 10  |-  ( x  e.  ( [ A ] R  i^i  [ B ] R )  ->  x  e.  [ B ] R
)
1312adantl 453 . . . . . . . . 9  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  x  e.  [ B ] R )
14 ecexr 6869 . . . . . . . . . . 11  |-  ( x  e.  [ B ] R  ->  B  e.  _V )
1513, 14syl 16 . . . . . . . . . 10  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  B  e.  _V )
16 elecg 6902 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  B  e.  _V )  ->  ( x  e.  [ B ] R  <->  B R x ) )
176, 15, 16sylancr 645 . . . . . . . . 9  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  ( x  e. 
[ B ] R  <->  B R x ) )
1813, 17mpbid 202 . . . . . . . 8  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  B R x )
192, 11, 18ertr4d 6883 . . . . . . 7  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  A R B )
202, 19erthi 6910 . . . . . 6  |-  ( ( R  Er  X  /\  x  e.  ( [ A ] R  i^i  [ B ] R ) )  ->  [ A ] R  =  [ B ] R )
2120ex 424 . . . . 5  |-  ( R  Er  X  ->  (
x  e.  ( [ A ] R  i^i  [ B ] R )  ->  [ A ] R  =  [ B ] R ) )
2221exlimdv 1643 . . . 4  |-  ( R  Er  X  ->  ( E. x  x  e.  ( [ A ] R  i^i  [ B ] R
)  ->  [ A ] R  =  [ B ] R ) )
231, 22syl5bi 209 . . 3  |-  ( R  Er  X  ->  ( -.  ( [ A ] R  i^i  [ B ] R )  =  (/)  ->  [ A ] R  =  [ B ] R
) )
2423orrd 368 . 2  |-  ( R  Er  X  ->  (
( [ A ] R  i^i  [ B ] R )  =  (/)  \/ 
[ A ] R  =  [ B ] R
) )
2524orcomd 378 1  |-  ( R  Er  X  ->  ( [ A ] R  =  [ B ] R  \/  ( [ A ] R  i^i  [ B ] R )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   _Vcvv 2916    i^i cin 3279   (/)c0 3588   class class class wbr 4172    Er wer 6861   [cec 6862
This theorem is referenced by:  qsdisj  6940
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-er 6864  df-ec 6866
  Copyright terms: Public domain W3C validator