Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknrel Structured version   Unicode version

Theorem erclwwlknrel 24484
 Description: is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
Hypotheses
Ref Expression
erclwwlkn.w ClWWalksN
erclwwlkn.r cyclShift
Assertion
Ref Expression
erclwwlknrel

Proof of Theorem erclwwlknrel
StepHypRef Expression
1 erclwwlkn.r . 2 cyclShift
21relopabi 5119 1
 Colors of variables: wff setvar class Syntax hints:   w3a 968   wceq 1374   wcel 1762  wrex 2808  copab 4497   wrel 4997  cfv 5579  (class class class)co 6275  cc0 9481  cfz 11661   cyclShift ccsh 12709   ClWWalksN cclwwlkn 24411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-opab 4499  df-xp 4998  df-rel 4999 This theorem is referenced by:  erclwwlkn  24490
 Copyright terms: Public domain W3C validator