MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlknrel Structured version   Unicode version

Theorem erclwwlknrel 24484
Description:  .~ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
Hypotheses
Ref Expression
erclwwlkn.w  |-  W  =  ( ( V ClWWalksN  E ) `
 N )
erclwwlkn.r  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
Assertion
Ref Expression
erclwwlknrel  |-  Rel  .~

Proof of Theorem erclwwlknrel
StepHypRef Expression
1 erclwwlkn.r . 2  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
21relopabi 5119 1  |-  Rel  .~
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 968    = wceq 1374    e. wcel 1762   E.wrex 2808   {copab 4497   Rel wrel 4997   ` cfv 5579  (class class class)co 6275   0cc0 9481   ...cfz 11661   cyclShift ccsh 12709   ClWWalksN cclwwlkn 24411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-opab 4499  df-xp 4998  df-rel 4999
This theorem is referenced by:  erclwwlkn  24490
  Copyright terms: Public domain W3C validator