Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexhv Structured version   Visualization version   Unicode version

Theorem equsexhv 2086
 Description: Version of equsexh 2145 with a dv condition, which does not require ax-13 2104. (Contributed by BJ, 31-May-2019.)
Hypotheses
Ref Expression
equsexhv.nf
equsexhv.1
Assertion
Ref Expression
equsexhv
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem equsexhv
StepHypRef Expression
1 equsexhv.nf . . 3
21nfi 1682 . 2
3 equsexhv.1 . 2
42, 3equsexv 2085 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376  wal 1450  wex 1671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676 This theorem is referenced by:  cleljustALT  2102
 Copyright terms: Public domain W3C validator