![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsalh | Structured version Visualization version Unicode version |
Description: An equivalence related to implicit substitution. (Contributed by NM, 2-Jun-1993.) |
Ref | Expression |
---|---|
equsalh.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
equsalh.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
equsalh |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalh.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | nfi 1684 |
. 2
![]() ![]() ![]() ![]() |
3 | equsalh.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | equsal 2138 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-10 1925 ax-12 1943 ax-13 2101 |
This theorem depends on definitions: df-bi 190 df-an 377 df-ex 1674 df-nf 1678 |
This theorem is referenced by: dvelimf-o 32544 |
Copyright terms: Public domain | W3C validator |