Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivtotbnd Structured version   Unicode version

Theorem equivtotbnd 31556
Description: If the metric  M is "strongly finer" than  N (meaning that there is a positive real constant 
R such that  N ( x ,  y )  <_  R  x.  M (
x ,  y )), then total boundedness of  M implies total boundedness of 
N. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivtotbnd.1  |-  ( ph  ->  M  e.  ( TotBnd `  X ) )
equivtotbnd.2  |-  ( ph  ->  N  e.  ( Met `  X ) )
equivtotbnd.3  |-  ( ph  ->  R  e.  RR+ )
equivtotbnd.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x N y )  <_  ( R  x.  ( x M y ) ) )
Assertion
Ref Expression
equivtotbnd  |-  ( ph  ->  N  e.  ( TotBnd `  X ) )
Distinct variable groups:    x, y, M    x, N, y    ph, x, y    x, X, y    x, R, y

Proof of Theorem equivtotbnd
Dummy variables  v 
s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivtotbnd.2 . 2  |-  ( ph  ->  N  e.  ( Met `  X ) )
2 simpr 459 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR+ )
3 equivtotbnd.3 . . . . . . 7  |-  ( ph  ->  R  e.  RR+ )
43adantr 463 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  R  e.  RR+ )
52, 4rpdivcld 11321 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  R )  e.  RR+ )
6 equivtotbnd.1 . . . . . . 7  |-  ( ph  ->  M  e.  ( TotBnd `  X ) )
76adantr 463 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  M  e.  ( TotBnd `  X )
)
8 istotbnd3 31549 . . . . . . 7  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X ) )
98simprbi 462 . . . . . 6  |-  ( M  e.  ( TotBnd `  X
)  ->  A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X )
107, 9syl 17 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X )
11 oveq2 6286 . . . . . . . . 9  |-  ( s  =  ( r  /  R )  ->  (
x ( ball `  M
) s )  =  ( x ( ball `  M ) ( r  /  R ) ) )
1211iuneq2d 4298 . . . . . . . 8  |-  ( s  =  ( r  /  R )  ->  U_ x  e.  v  ( x
( ball `  M )
s )  =  U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) ) )
1312eqeq1d 2404 . . . . . . 7  |-  ( s  =  ( r  /  R )  ->  ( U_ x  e.  v 
( x ( ball `  M ) s )  =  X  <->  U_ x  e.  v  ( x (
ball `  M )
( r  /  R
) )  =  X ) )
1413rexbidv 2918 . . . . . 6  |-  ( s  =  ( r  /  R )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) s )  =  X  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
( r  /  R
) )  =  X ) )
1514rspcv 3156 . . . . 5  |-  ( ( r  /  R )  e.  RR+  ->  ( A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x ( ball `  M ) ( r  /  R ) )  =  X ) )
165, 10, 15sylc 59 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
( r  /  R
) )  =  X )
17 elfpw 7856 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
1817simplbi 458 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
1918adantl 464 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  v  C_  X )
2019sselda 3442 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  X )
21 eqid 2402 . . . . . . . . . . . . . 14  |-  ( MetOpen `  N )  =  (
MetOpen `  N )
22 eqid 2402 . . . . . . . . . . . . . 14  |-  ( MetOpen `  M )  =  (
MetOpen `  M )
238simplbi 458 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Met `  X ) )
246, 23syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( Met `  X ) )
25 equivtotbnd.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x N y )  <_  ( R  x.  ( x M y ) ) )
2621, 22, 1, 24, 3, 25metss2lem 21306 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( x ( ball `  M ) ( r  /  R ) ) 
C_  ( x (
ball `  N )
r ) )
2726anass1rs 808 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  X )  ->  (
x ( ball `  M
) ( r  /  R ) )  C_  ( x ( ball `  N ) r ) )
2827adantlr 713 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  X
)  ->  ( x
( ball `  M )
( r  /  R
) )  C_  (
x ( ball `  N
) r ) )
2920, 28syldan 468 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  ( x
( ball `  M )
( r  /  R
) )  C_  (
x ( ball `  N
) r ) )
3029ralrimiva 2818 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  M )
( r  /  R
) )  C_  (
x ( ball `  N
) r ) )
31 ss2iun 4287 . . . . . . . . 9  |-  ( A. x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  C_  ( x ( ball `  N ) r )  ->  U_ x  e.  v  ( x ( ball `  M ) ( r  /  R ) ) 
C_  U_ x  e.  v  ( x ( ball `  N ) r ) )
3230, 31syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  M )
( r  /  R
) )  C_  U_ x  e.  v  ( x
( ball `  N )
r ) )
33 sseq1 3463 . . . . . . . 8  |-  ( U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  =  X  ->  ( U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  C_  U_ x  e.  v  ( x ( ball `  N
) r )  <->  X  C_  U_ x  e.  v  ( x
( ball `  N )
r ) ) )
3432, 33syl5ibcom 220 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) ( r  /  R ) )  =  X  ->  X  C_ 
U_ x  e.  v  ( x ( ball `  N ) r ) ) )
351ad3antrrr 728 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  N  e.  ( Met `  X ) )
36 metxmet 21129 . . . . . . . . . . 11  |-  ( N  e.  ( Met `  X
)  ->  N  e.  ( *Met `  X
) )
3735, 36syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  N  e.  ( *Met `  X
) )
38 simpllr 761 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  r  e.  RR+ )
3938rpxrd 11305 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  r  e.  RR* )
40 blssm 21213 . . . . . . . . . 10  |-  ( ( N  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  N ) r ) 
C_  X )
4137, 20, 39, 40syl3anc 1230 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  ( x
( ball `  N )
r )  C_  X
)
4241ralrimiva 2818 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  N )
r )  C_  X
)
43 iunss 4312 . . . . . . . 8  |-  ( U_ x  e.  v  (
x ( ball `  N
) r )  C_  X 
<-> 
A. x  e.  v  ( x ( ball `  N ) r ) 
C_  X )
4442, 43sylibr 212 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  N )
r )  C_  X
)
4534, 44jctild 541 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) ( r  /  R ) )  =  X  ->  ( U_ x  e.  v 
( x ( ball `  N ) r ) 
C_  X  /\  X  C_ 
U_ x  e.  v  ( x ( ball `  N ) r ) ) ) )
46 eqss 3457 . . . . . 6  |-  ( U_ x  e.  v  (
x ( ball `  N
) r )  =  X  <->  ( U_ x  e.  v  ( x
( ball `  N )
r )  C_  X  /\  X  C_  U_ x  e.  v  ( x
( ball `  N )
r ) ) )
4745, 46syl6ibr 227 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) ( r  /  R ) )  =  X  ->  U_ x  e.  v  ( x
( ball `  N )
r )  =  X ) )
4847reximdva 2879 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
r )  =  X ) )
4916, 48mpd 15 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
r )  =  X )
5049ralrimiva 2818 . 2  |-  ( ph  ->  A. r  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  N ) r )  =  X )
51 istotbnd3 31549 . 2  |-  ( N  e.  ( TotBnd `  X
)  <->  ( N  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
r )  =  X ) )
521, 50, 51sylanbrc 662 1  |-  ( ph  ->  N  e.  ( TotBnd `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755    i^i cin 3413    C_ wss 3414   ~Pcpw 3955   U_ciun 4271   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Fincfn 7554    x. cmul 9527   RR*cxr 9657    <_ cle 9659    / cdiv 10247   RR+crp 11265   *Metcxmt 18723   Metcme 18724   ballcbl 18725   MetOpencmopn 18728   TotBndctotbnd 31544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-rp 11266  df-xadd 11372  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-totbnd 31546
This theorem is referenced by:  equivbnd2  31570
  Copyright terms: Public domain W3C validator