Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivtotbnd Structured version   Unicode version

Theorem equivtotbnd 28674
Description: If the metric  M is "strongly finer" than  N (meaning that there is a positive real constant 
R such that  N ( x ,  y )  <_  R  x.  M (
x ,  y )), then total boundedness of  M implies total boundedness of 
N. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivtotbnd.1  |-  ( ph  ->  M  e.  ( TotBnd `  X ) )
equivtotbnd.2  |-  ( ph  ->  N  e.  ( Met `  X ) )
equivtotbnd.3  |-  ( ph  ->  R  e.  RR+ )
equivtotbnd.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x N y )  <_  ( R  x.  ( x M y ) ) )
Assertion
Ref Expression
equivtotbnd  |-  ( ph  ->  N  e.  ( TotBnd `  X ) )
Distinct variable groups:    x, y, M    x, N, y    ph, x, y    x, X, y    x, R, y

Proof of Theorem equivtotbnd
Dummy variables  v 
s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivtotbnd.2 . 2  |-  ( ph  ->  N  e.  ( Met `  X ) )
2 simpr 461 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  r  e.  RR+ )
3 equivtotbnd.3 . . . . . . 7  |-  ( ph  ->  R  e.  RR+ )
43adantr 465 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  R  e.  RR+ )
52, 4rpdivcld 11042 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( r  /  R )  e.  RR+ )
6 equivtotbnd.1 . . . . . . 7  |-  ( ph  ->  M  e.  ( TotBnd `  X ) )
76adantr 465 . . . . . 6  |-  ( (
ph  /\  r  e.  RR+ )  ->  M  e.  ( TotBnd `  X )
)
8 istotbnd3 28667 . . . . . . 7  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X ) )
98simprbi 464 . . . . . 6  |-  ( M  e.  ( TotBnd `  X
)  ->  A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X )
107, 9syl 16 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X )
11 oveq2 6097 . . . . . . . . 9  |-  ( s  =  ( r  /  R )  ->  (
x ( ball `  M
) s )  =  ( x ( ball `  M ) ( r  /  R ) ) )
1211iuneq2d 4195 . . . . . . . 8  |-  ( s  =  ( r  /  R )  ->  U_ x  e.  v  ( x
( ball `  M )
s )  =  U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) ) )
1312eqeq1d 2449 . . . . . . 7  |-  ( s  =  ( r  /  R )  ->  ( U_ x  e.  v 
( x ( ball `  M ) s )  =  X  <->  U_ x  e.  v  ( x (
ball `  M )
( r  /  R
) )  =  X ) )
1413rexbidv 2734 . . . . . 6  |-  ( s  =  ( r  /  R )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) s )  =  X  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
( r  /  R
) )  =  X ) )
1514rspcv 3067 . . . . 5  |-  ( ( r  /  R )  e.  RR+  ->  ( A. s  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
s )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x ( ball `  M ) ( r  /  R ) )  =  X ) )
165, 10, 15sylc 60 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
( r  /  R
) )  =  X )
17 elfpw 7611 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
1817simplbi 460 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
1918adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  v  C_  X )
2019sselda 3354 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  x  e.  X )
21 eqid 2441 . . . . . . . . . . . . . 14  |-  ( MetOpen `  N )  =  (
MetOpen `  N )
22 eqid 2441 . . . . . . . . . . . . . 14  |-  ( MetOpen `  M )  =  (
MetOpen `  M )
238simplbi 460 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Met `  X ) )
246, 23syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( Met `  X ) )
25 equivtotbnd.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x N y )  <_  ( R  x.  ( x M y ) ) )
2621, 22, 1, 24, 3, 25metss2lem 20084 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( x ( ball `  M ) ( r  /  R ) ) 
C_  ( x (
ball `  N )
r ) )
2726anass1rs 805 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  X )  ->  (
x ( ball `  M
) ( r  /  R ) )  C_  ( x ( ball `  N ) r ) )
2827adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  X
)  ->  ( x
( ball `  M )
( r  /  R
) )  C_  (
x ( ball `  N
) r ) )
2920, 28syldan 470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  ( x
( ball `  M )
( r  /  R
) )  C_  (
x ( ball `  N
) r ) )
3029ralrimiva 2797 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  M )
( r  /  R
) )  C_  (
x ( ball `  N
) r ) )
31 ss2iun 4184 . . . . . . . . 9  |-  ( A. x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  C_  ( x ( ball `  N ) r )  ->  U_ x  e.  v  ( x ( ball `  M ) ( r  /  R ) ) 
C_  U_ x  e.  v  ( x ( ball `  N ) r ) )
3230, 31syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  M )
( r  /  R
) )  C_  U_ x  e.  v  ( x
( ball `  N )
r ) )
33 sseq1 3375 . . . . . . . 8  |-  ( U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  =  X  ->  ( U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  C_  U_ x  e.  v  ( x ( ball `  N
) r )  <->  X  C_  U_ x  e.  v  ( x
( ball `  N )
r ) ) )
3432, 33syl5ibcom 220 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) ( r  /  R ) )  =  X  ->  X  C_ 
U_ x  e.  v  ( x ( ball `  N ) r ) ) )
351ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  N  e.  ( Met `  X ) )
36 metxmet 19907 . . . . . . . . . . 11  |-  ( N  e.  ( Met `  X
)  ->  N  e.  ( *Met `  X
) )
3735, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  N  e.  ( *Met `  X
) )
38 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  r  e.  RR+ )
3938rpxrd 11026 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  r  e.  RR* )
40 blssm 19991 . . . . . . . . . 10  |-  ( ( N  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  N ) r ) 
C_  X )
4137, 20, 39, 40syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  /\  x  e.  v )  ->  ( x
( ball `  N )
r )  C_  X
)
4241ralrimiva 2797 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  A. x  e.  v  ( x
( ball `  N )
r )  C_  X
)
43 iunss 4209 . . . . . . . 8  |-  ( U_ x  e.  v  (
x ( ball `  N
) r )  C_  X 
<-> 
A. x  e.  v  ( x ( ball `  N ) r ) 
C_  X )
4442, 43sylibr 212 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  U_ x  e.  v  ( x
( ball `  N )
r )  C_  X
)
4534, 44jctild 543 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) ( r  /  R ) )  =  X  ->  ( U_ x  e.  v 
( x ( ball `  N ) r ) 
C_  X  /\  X  C_ 
U_ x  e.  v  ( x ( ball `  N ) r ) ) ) )
46 eqss 3369 . . . . . 6  |-  ( U_ x  e.  v  (
x ( ball `  N
) r )  =  X  <->  ( U_ x  e.  v  ( x
( ball `  N )
r )  C_  X  /\  X  C_  U_ x  e.  v  ( x
( ball `  N )
r ) ) )
4745, 46syl6ibr 227 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  v  e.  ( ~P X  i^i  Fin ) )  ->  ( U_ x  e.  v 
( x ( ball `  M ) ( r  /  R ) )  =  X  ->  U_ x  e.  v  ( x
( ball `  N )
r )  =  X ) )
4847reximdva 2826 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) ( r  /  R ) )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
r )  =  X ) )
4916, 48mpd 15 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
r )  =  X )
5049ralrimiva 2797 . 2  |-  ( ph  ->  A. r  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  N ) r )  =  X )
51 istotbnd3 28667 . 2  |-  ( N  e.  ( TotBnd `  X
)  <->  ( N  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  N )
r )  =  X ) )
521, 50, 51sylanbrc 664 1  |-  ( ph  ->  N  e.  ( TotBnd `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2713   E.wrex 2714    i^i cin 3325    C_ wss 3326   ~Pcpw 3858   U_ciun 4169   class class class wbr 4290   ` cfv 5416  (class class class)co 6089   Fincfn 7308    x. cmul 9285   RR*cxr 9415    <_ cle 9417    / cdiv 9991   RR+crp 10989   *Metcxmt 17799   Metcme 17800   ballcbl 17801   MetOpencmopn 17804   TotBndctotbnd 28662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-rp 10990  df-xadd 11088  df-psmet 17807  df-xmet 17808  df-met 17809  df-bl 17810  df-totbnd 28664
This theorem is referenced by:  equivbnd2  28688
  Copyright terms: Public domain W3C validator