MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcfil Structured version   Unicode version

Theorem equivcfil 20825
Description: If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), all the  D-Cauchy filters are also  C-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
equivcau.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
equivcau.3  |-  ( ph  ->  R  e.  RR+ )
equivcau.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
equivcfil  |-  ( ph  ->  (CauFil `  D )  C_  (CauFil `  C )
)
Distinct variable groups:    x, y, C    x, D, y    ph, x, y    x, R, y    x, X, y

Proof of Theorem equivcfil
Dummy variables  f 
r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
2 equivcau.3 . . . . . . . . 9  |-  ( ph  ->  R  e.  RR+ )
32ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  r  e.  RR+ )  ->  R  e.  RR+ )
41, 3rpdivcld 11059 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  r  e.  RR+ )  ->  (
r  /  R )  e.  RR+ )
5 oveq2 6114 . . . . . . . . . 10  |-  ( s  =  ( r  /  R )  ->  (
x ( ball `  D
) s )  =  ( x ( ball `  D ) ( r  /  R ) ) )
65eleq1d 2509 . . . . . . . . 9  |-  ( s  =  ( r  /  R )  ->  (
( x ( ball `  D ) s )  e.  f  <->  ( x
( ball `  D )
( r  /  R
) )  e.  f ) )
76rexbidv 2751 . . . . . . . 8  |-  ( s  =  ( r  /  R )  ->  ( E. x  e.  X  ( x ( ball `  D ) s )  e.  f  <->  E. x  e.  X  ( x
( ball `  D )
( r  /  R
) )  e.  f ) )
87rspcv 3084 . . . . . . 7  |-  ( ( r  /  R )  e.  RR+  ->  ( A. s  e.  RR+  E. x  e.  X  ( x
( ball `  D )
s )  e.  f  ->  E. x  e.  X  ( x ( ball `  D ) ( r  /  R ) )  e.  f ) )
94, 8syl 16 . . . . . 6  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  r  e.  RR+ )  ->  ( A. s  e.  RR+  E. x  e.  X  ( x
( ball `  D )
s )  e.  f  ->  E. x  e.  X  ( x ( ball `  D ) ( r  /  R ) )  e.  f ) )
10 simpllr 758 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  f  e.  ( Fil `  X ) )
11 eqid 2443 . . . . . . . . . . . 12  |-  ( MetOpen `  C )  =  (
MetOpen `  C )
12 eqid 2443 . . . . . . . . . . . 12  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
13 equivcau.1 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( Met `  X ) )
14 equivcau.2 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( Met `  X ) )
15 equivcau.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
1611, 12, 13, 14, 2, 15metss2lem 20101 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
1716ancom2s 800 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  RR+  /\  x  e.  X ) )  -> 
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
1817adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  (
r  e.  RR+  /\  x  e.  X ) )  -> 
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
1918anassrs 648 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
2013ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  C  e.  ( Met `  X ) )
21 metxmet 19924 . . . . . . . . . 10  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
2220, 21syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  C  e.  ( *Met `  X ) )
23 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  x  e.  X )
24 rpxr 11013 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  r  e. 
RR* )
2524ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  r  e.  RR* )
26 blssm 20008 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  C ) r ) 
C_  X )
2722, 23, 25, 26syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( x ( ball `  C ) r ) 
C_  X )
28 filss 19441 . . . . . . . . . 10  |-  ( ( f  e.  ( Fil `  X )  /\  (
( x ( ball `  D ) ( r  /  R ) )  e.  f  /\  (
x ( ball `  C
) r )  C_  X  /\  ( x (
ball `  D )
( r  /  R
) )  C_  (
x ( ball `  C
) r ) ) )  ->  ( x
( ball `  C )
r )  e.  f )
29283exp2 1205 . . . . . . . . 9  |-  ( f  e.  ( Fil `  X
)  ->  ( (
x ( ball `  D
) ( r  /  R ) )  e.  f  ->  ( (
x ( ball `  C
) r )  C_  X  ->  ( ( x ( ball `  D
) ( r  /  R ) )  C_  ( x ( ball `  C ) r )  ->  ( x (
ball `  C )
r )  e.  f ) ) ) )
3029com24 87 . . . . . . . 8  |-  ( f  e.  ( Fil `  X
)  ->  ( (
x ( ball `  D
) ( r  /  R ) )  C_  ( x ( ball `  C ) r )  ->  ( ( x ( ball `  C
) r )  C_  X  ->  ( ( x ( ball `  D
) ( r  /  R ) )  e.  f  ->  ( x
( ball `  C )
r )  e.  f ) ) ) )
3110, 19, 27, 30syl3c 61 . . . . . . 7  |-  ( ( ( ( ph  /\  f  e.  ( Fil `  X ) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( ( x (
ball `  D )
( r  /  R
) )  e.  f  ->  ( x (
ball `  C )
r )  e.  f ) )
3231reximdva 2843 . . . . . 6  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  r  e.  RR+ )  ->  ( E. x  e.  X  ( x ( ball `  D ) ( r  /  R ) )  e.  f  ->  E. x  e.  X  ( x
( ball `  C )
r )  e.  f ) )
339, 32syld 44 . . . . 5  |-  ( ( ( ph  /\  f  e.  ( Fil `  X
) )  /\  r  e.  RR+ )  ->  ( A. s  e.  RR+  E. x  e.  X  ( x
( ball `  D )
s )  e.  f  ->  E. x  e.  X  ( x ( ball `  C ) r )  e.  f ) )
3433ralrimdva 2821 . . . 4  |-  ( (
ph  /\  f  e.  ( Fil `  X ) )  ->  ( A. s  e.  RR+  E. x  e.  X  ( x
( ball `  D )
s )  e.  f  ->  A. r  e.  RR+  E. x  e.  X  ( x ( ball `  C
) r )  e.  f ) )
3534imdistanda 693 . . 3  |-  ( ph  ->  ( ( f  e.  ( Fil `  X
)  /\  A. s  e.  RR+  E. x  e.  X  ( x (
ball `  D )
s )  e.  f )  ->  ( f  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  C )
r )  e.  f ) ) )
36 metxmet 19924 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
37 iscfil3 20799 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  (CauFil `  D )  <->  ( f  e.  ( Fil `  X
)  /\  A. s  e.  RR+  E. x  e.  X  ( x (
ball `  D )
s )  e.  f ) ) )
3814, 36, 373syl 20 . . 3  |-  ( ph  ->  ( f  e.  (CauFil `  D )  <->  ( f  e.  ( Fil `  X
)  /\  A. s  e.  RR+  E. x  e.  X  ( x (
ball `  D )
s )  e.  f ) ) )
39 iscfil3 20799 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  (
f  e.  (CauFil `  C )  <->  ( f  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  C )
r )  e.  f ) ) )
4013, 21, 393syl 20 . . 3  |-  ( ph  ->  ( f  e.  (CauFil `  C )  <->  ( f  e.  ( Fil `  X
)  /\  A. r  e.  RR+  E. x  e.  X  ( x (
ball `  C )
r )  e.  f ) ) )
4135, 38, 403imtr4d 268 . 2  |-  ( ph  ->  ( f  e.  (CauFil `  D )  ->  f  e.  (CauFil `  C )
) )
4241ssrdv 3377 1  |-  ( ph  ->  (CauFil `  D )  C_  (CauFil `  C )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2730   E.wrex 2731    C_ wss 3343   class class class wbr 4307   ` cfv 5433  (class class class)co 6106    x. cmul 9302   RR*cxr 9432    <_ cle 9434    / cdiv 10008   RR+crp 11006   *Metcxmt 17816   Metcme 17817   ballcbl 17818   MetOpencmopn 17821   Filcfil 19433  CauFilccfil 20778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-id 4651  df-po 4656  df-so 4657  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-1st 6592  df-2nd 6593  df-er 7116  df-map 7231  df-en 7326  df-dom 7327  df-sdom 7328  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-2 10395  df-rp 11007  df-xneg 11104  df-xadd 11105  df-xmul 11106  df-ico 11321  df-psmet 17824  df-xmet 17825  df-met 17826  df-bl 17827  df-fbas 17829  df-fil 19434  df-cfil 20781
This theorem is referenced by:  equivcmet  20841
  Copyright terms: Public domain W3C validator