MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcau Structured version   Unicode version

Theorem equivcau 21908
Description: If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), all the  D-Cauchy sequences are also  C-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
equivcau.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
equivcau.3  |-  ( ph  ->  R  e.  RR+ )
equivcau.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
equivcau  |-  ( ph  ->  ( Cau `  D
)  C_  ( Cau `  C ) )
Distinct variable groups:    x, y, C    x, D, y    ph, x, y    x, R, y    x, X, y

Proof of Theorem equivcau
Dummy variables  f 
k  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 459 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
2 equivcau.3 . . . . . . . 8  |-  ( ph  ->  R  e.  RR+ )
32ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  R  e.  RR+ )
41, 3rpdivcld 11276 . . . . . 6  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  (
r  /  R )  e.  RR+ )
5 oveq2 6278 . . . . . . . . 9  |-  ( s  =  ( r  /  R )  ->  (
( f `  k
) ( ball `  D
) s )  =  ( ( f `  k ) ( ball `  D ) ( r  /  R ) ) )
65feq3d 5701 . . . . . . . 8  |-  ( s  =  ( r  /  R )  ->  (
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
s )  <->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) ) ) )
76rexbidv 2965 . . . . . . 7  |-  ( s  =  ( r  /  R )  ->  ( E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
s )  <->  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) ) ) )
87rspcv 3203 . . . . . 6  |-  ( ( r  /  R )  e.  RR+  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )
94, 8syl 16 . . . . 5  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )
10 simprr 755 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) ) )
11 elpmi 7430 . . . . . . . . . . . 12  |-  ( f  e.  ( X  ^pm  CC )  ->  ( f : dom  f --> X  /\  dom  f  C_  CC ) )
1211simpld 457 . . . . . . . . . . 11  |-  ( f  e.  ( X  ^pm  CC )  ->  f : dom  f --> X )
1312ad3antlr 728 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  f : dom  f
--> X )
14 resss 5285 . . . . . . . . . . . 12  |-  ( f  |`  ( ZZ>= `  k )
)  C_  f
15 dmss 5191 . . . . . . . . . . . 12  |-  ( ( f  |`  ( ZZ>= `  k ) )  C_  f  ->  dom  ( f  |`  ( ZZ>= `  k )
)  C_  dom  f )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  dom  (
f  |`  ( ZZ>= `  k
) )  C_  dom  f
17 uzid 11096 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  k  e.  ( ZZ>= `  k )
)
1817ad2antrl 725 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  k  e.  (
ZZ>= `  k ) )
19 fdm 5717 . . . . . . . . . . . . 13  |-  ( ( f  |`  ( ZZ>= `  k ) ) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D ) ( r  /  R ) )  ->  dom  ( f  |`  ( ZZ>= `  k )
)  =  ( ZZ>= `  k ) )
2019ad2antll 726 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  dom  ( f  |`  ( ZZ>= `  k )
)  =  ( ZZ>= `  k ) )
2118, 20eleqtrrd 2545 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  k  e.  dom  ( f  |`  ( ZZ>=
`  k ) ) )
2216, 21sseldi 3487 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  k  e.  dom  f )
2313, 22ffvelrnd 6008 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( f `  k )  e.  X
)
24 eqid 2454 . . . . . . . . . . . . 13  |-  ( MetOpen `  C )  =  (
MetOpen `  C )
25 eqid 2454 . . . . . . . . . . . . 13  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
26 equivcau.1 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( Met `  X ) )
27 equivcau.2 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ( Met `  X ) )
28 equivcau.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
2924, 25, 26, 27, 2, 28metss2lem 21183 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
3029expr 613 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
r  e.  RR+  ->  ( x ( ball `  D
) ( r  /  R ) )  C_  ( x ( ball `  C ) r ) ) )
3130ralrimiva 2868 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  X  ( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) ) )
3231ad3antrrr 727 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  A. x  e.  X  ( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) ) )
33 simplr 753 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  r  e.  RR+ )
34 oveq1 6277 . . . . . . . . . . . 12  |-  ( x  =  ( f `  k )  ->  (
x ( ball `  D
) ( r  /  R ) )  =  ( ( f `  k ) ( ball `  D ) ( r  /  R ) ) )
35 oveq1 6277 . . . . . . . . . . . 12  |-  ( x  =  ( f `  k )  ->  (
x ( ball `  C
) r )  =  ( ( f `  k ) ( ball `  C ) r ) )
3634, 35sseq12d 3518 . . . . . . . . . . 11  |-  ( x  =  ( f `  k )  ->  (
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r )  <->  ( (
f `  k )
( ball `  D )
( r  /  R
) )  C_  (
( f `  k
) ( ball `  C
) r ) ) )
3736imbi2d 314 . . . . . . . . . 10  |-  ( x  =  ( f `  k )  ->  (
( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )  <->  ( r  e.  RR+  ->  ( (
f `  k )
( ball `  D )
( r  /  R
) )  C_  (
( f `  k
) ( ball `  C
) r ) ) ) )
3837rspcv 3203 . . . . . . . . 9  |-  ( ( f `  k )  e.  X  ->  ( A. x  e.  X  ( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )  -> 
( r  e.  RR+  ->  ( ( f `  k ) ( ball `  D ) ( r  /  R ) ) 
C_  ( ( f `
 k ) (
ball `  C )
r ) ) ) )
3923, 32, 33, 38syl3c 61 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( ( f `
 k ) (
ball `  D )
( r  /  R
) )  C_  (
( f `  k
) ( ball `  C
) r ) )
4010, 39fssd 5722 . . . . . . 7  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) )
4140expr 613 . . . . . 6  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  k  e.  ZZ )  ->  ( ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) )  -> 
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  C )
r ) ) )
4241reximdva 2929 . . . . 5  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  ( E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) ) )
439, 42syld 44 . . . 4  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  C )
r ) ) )
4443ralrimdva 2872 . . 3  |-  ( (
ph  /\  f  e.  ( X  ^pm  CC ) )  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  A. r  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) ) )
4544ss2rabdv 3567 . 2  |-  ( ph  ->  { f  e.  ( X  ^pm  CC )  |  A. s  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) s ) } 
C_  { f  e.  ( X  ^pm  CC )  |  A. r  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) } )
46 metxmet 21006 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
47 caufval 21883 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  D )  =  { f  e.  ( X  ^pm  CC )  |  A. s  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) s ) } )
4827, 46, 473syl 20 . 2  |-  ( ph  ->  ( Cau `  D
)  =  { f  e.  ( X  ^pm  CC )  |  A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s ) } )
49 metxmet 21006 . . 3  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
50 caufval 21883 . . 3  |-  ( C  e.  ( *Met `  X )  ->  ( Cau `  C )  =  { f  e.  ( X  ^pm  CC )  |  A. r  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  C
) r ) } )
5126, 49, 503syl 20 . 2  |-  ( ph  ->  ( Cau `  C
)  =  { f  e.  ( X  ^pm  CC )  |  A. r  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) } )
5245, 48, 513sstr4d 3532 1  |-  ( ph  ->  ( Cau `  D
)  C_  ( Cau `  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   {crab 2808    C_ wss 3461   class class class wbr 4439   dom cdm 4988    |` cres 4990   -->wf 5566   ` cfv 5570  (class class class)co 6270    ^pm cpm 7413   CCcc 9479    x. cmul 9486    <_ cle 9618    / cdiv 10202   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221   *Metcxmt 18601   Metcme 18602   ballcbl 18603   MetOpencmopn 18606   Caucca 21861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-z 10861  df-uz 11083  df-rp 11222  df-xadd 11322  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-cau 21864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator