MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equidq Structured version   Unicode version

Theorem equidq 2234
Description: equid 1731 with universal quantifier without using ax-c5 2194 or ax-5 1671. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equidq  |-  A. y  x  =  x

Proof of Theorem equidq
StepHypRef Expression
1 equidqe 2232 . 2  |-  -.  A. y  -.  x  =  x
2 ax10 2206 . . 3  |-  ( -. 
A. y  x  =  x  ->  A. y  -.  A. y  x  =  x )
3 hbequid 2219 . . . 4  |-  ( x  =  x  ->  A. y  x  =  x )
43con3i 135 . . 3  |-  ( -. 
A. y  x  =  x  ->  -.  x  =  x )
52, 4alrimih 1613 . 2  |-  ( -. 
A. y  x  =  x  ->  A. y  -.  x  =  x
)
61, 5mt3 180 1  |-  A. y  x  =  x
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-7 1730  ax-c5 2194  ax-c4 2195  ax-c7 2196  ax-c10 2197  ax-c9 2201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator