![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2d | Structured version Visualization version Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
eqtr2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqtr2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrd 2496 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqcomd 2468 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |