MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsupd Structured version   Unicode version

Theorem eqsupd 7929
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypotheses
Ref Expression
supmo.1  |-  ( ph  ->  R  Or  A )
eqsupd.2  |-  ( ph  ->  C  e.  A )
eqsupd.3  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
eqsupd.4  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )
Assertion
Ref Expression
eqsupd  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Distinct variable groups:    y, z, A    y, R, z    y, B, z    y, C    ph, y
Allowed substitution hints:    ph( z)    C( z)

Proof of Theorem eqsupd
StepHypRef Expression
1 eqsupd.2 . 2  |-  ( ph  ->  C  e.  A )
2 eqsupd.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
32ralrimiva 2881 . 2  |-  ( ph  ->  A. y  e.  B  -.  C R y )
4 eqsupd.4 . . . 4  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )
54expr 615 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
y R C  ->  E. z  e.  B  y R z ) )
65ralrimiva 2881 . 2  |-  ( ph  ->  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )
7 supmo.1 . . 3  |-  ( ph  ->  R  Or  A )
87eqsup 7928 . 2  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
91, 3, 6, 8mp3and 1327 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   class class class wbr 4453    Or wor 4805   supcsup 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-po 4806  df-so 4807  df-iota 5557  df-riota 6256  df-sup 7913
This theorem is referenced by:  supiso  7945  xrinfm0  11540  esumpcvgval  27916  mblfinlem3  29987  mblfinlem4  29988  ismblfin  29989  itg2addnclem  30000
  Copyright terms: Public domain W3C validator