Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsb3 Structured version   Visualization version   Unicode version

Theorem eqsb3 2556
 Description: Substitution applied to an atomic wff (class version of equsb3 2261). (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb3
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem eqsb3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqsb3lem 2555 . . 3
21sbbii 1804 . 2
3 nfv 1761 . . 3
43sbco2 2244 . 2
5 eqsb3lem 2555 . 2
62, 4, 53bitr3i 279 1
 Colors of variables: wff setvar class Syntax hints:   wb 188   wceq 1444  wsb 1797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-ex 1664  df-nf 1668  df-sb 1798  df-cleq 2444 This theorem is referenced by:  pm13.183  3179  eqsbc3  3307
 Copyright terms: Public domain W3C validator