MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqreznegel Structured version   Unicode version

Theorem eqreznegel 11192
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Distinct variable group:    z, A

Proof of Theorem eqreznegel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3493 . . . . . . . 8  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  -u w  e.  ZZ )
)
2 recn 9599 . . . . . . . . 9  |-  ( w  e.  RR  ->  w  e.  CC )
3 negid 9885 . . . . . . . . . . . 12  |-  ( w  e.  CC  ->  (
w  +  -u w
)  =  0 )
4 0z 10896 . . . . . . . . . . . 12  |-  0  e.  ZZ
53, 4syl6eqel 2553 . . . . . . . . . . 11  |-  ( w  e.  CC  ->  (
w  +  -u w
)  e.  ZZ )
65pm4.71i 632 . . . . . . . . . 10  |-  ( w  e.  CC  <->  ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) )
7 zrevaddcl 10930 . . . . . . . . . 10  |-  ( -u w  e.  ZZ  ->  ( ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) 
<->  w  e.  ZZ ) )
86, 7syl5bb 257 . . . . . . . . 9  |-  ( -u w  e.  ZZ  ->  ( w  e.  CC  <->  w  e.  ZZ ) )
92, 8syl5ib 219 . . . . . . . 8  |-  ( -u w  e.  ZZ  ->  ( w  e.  RR  ->  w  e.  ZZ ) )
101, 9syl6 33 . . . . . . 7  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  ( w  e.  RR  ->  w  e.  ZZ ) ) )
1110com23 78 . . . . . 6  |-  ( A 
C_  ZZ  ->  ( w  e.  RR  ->  ( -u w  e.  A  ->  w  e.  ZZ )
) )
1211impd 431 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  w  e.  ZZ ) )
13 simpr 461 . . . . . 6  |-  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
)
1413a1i 11 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
) )
1512, 14jcad 533 . . . 4  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  ( w  e.  ZZ  /\  -u w  e.  A ) ) )
16 zre 10889 . . . . 5  |-  ( w  e.  ZZ  ->  w  e.  RR )
1716anim1i 568 . . . 4  |-  ( ( w  e.  ZZ  /\  -u w  e.  A )  ->  ( w  e.  RR  /\  -u w  e.  A ) )
1815, 17impbid1 203 . . 3  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  <-> 
( w  e.  ZZ  /\  -u w  e.  A
) ) )
19 negeq 9831 . . . . 5  |-  ( z  =  w  ->  -u z  =  -u w )
2019eleq1d 2526 . . . 4  |-  ( z  =  w  ->  ( -u z  e.  A  <->  -u w  e.  A ) )
2120elrab 3257 . . 3  |-  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
2220elrab 3257 . . 3  |-  ( w  e.  { z  e.  ZZ  |  -u z  e.  A }  <->  ( w  e.  ZZ  /\  -u w  e.  A ) )
2318, 21, 223bitr4g 288 . 2  |-  ( A 
C_  ZZ  ->  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  w  e.  { z  e.  ZZ  |  -u z  e.  A }
) )
2423eqrdv 2454 1  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811    C_ wss 3471  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509    + caddc 9512   -ucneg 9825   ZZcz 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator