MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelriv Structured version   Unicode version

Theorem eqrelriv 5094
Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
Hypothesis
Ref Expression
eqrelriv.1  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
Assertion
Ref Expression
eqrelriv  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem eqrelriv
StepHypRef Expression
1 eqrelriv.1 . . 3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
21gen2 1602 . 2  |-  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  B )
3 eqrel 5090 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
42, 3mpbiri 233 1  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   <.cop 4033   Rel wrel 5004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-opab 4506  df-xp 5005  df-rel 5006
This theorem is referenced by:  eqrelriiv  5095  dfrel2  5455  coi1  5521  cnviin  5542
  Copyright terms: Public domain W3C validator