MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrel Structured version   Unicode version

Theorem eqrel 4927
Description: Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
eqrel  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem eqrel
StepHypRef Expression
1 ssrel 4926 . . 3  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
2 ssrel 4926 . . 3  |-  ( Rel 
B  ->  ( B  C_  A  <->  A. x A. y
( <. x ,  y
>.  e.  B  ->  <. x ,  y >.  e.  A
) ) )
31, 2bi2anan9 868 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  /\  A. x A. y ( <. x ,  y >.  e.  B  -> 
<. x ,  y >.  e.  A ) ) ) )
4 eqss 3369 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 2albiim 1666 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )  <->  ( A. x A. y ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
)  /\  A. x A. y ( <. x ,  y >.  e.  B  -> 
<. x ,  y >.  e.  A ) ) )
63, 4, 53bitr4g 288 1  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756    C_ wss 3326   <.cop 3881   Rel wrel 4843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-opab 4349  df-xp 4844  df-rel 4845
This theorem is referenced by:  eqrelriv  4931  eqrelrdv  4934  eqbrrdv  4935  eqrelrdv2  4937  opabid2  4967  reldm0  5055  iss  5152  asymref  5212  funssres  5456  fsn  5879
  Copyright terms: Public domain W3C validator