Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrdav Structured version   Unicode version

Theorem eqrdav 2465
 Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypotheses
Ref Expression
eqrdav.1
eqrdav.2
eqrdav.3
Assertion
Ref Expression
eqrdav
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eqrdav
StepHypRef Expression
1 eqrdav.1 . . . 4
2 eqrdav.3 . . . . . 6
32biimpd 207 . . . . 5
43impancom 440 . . . 4
51, 4mpd 15 . . 3
6 eqrdav.2 . . . 4
72biimprd 223 . . . . 5
87impancom 440 . . . 4
96, 8mpd 15 . . 3
105, 9impbida 830 . 2
1110eqrdv 2464 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1379   wcel 1767 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-an 371  df-cleq 2459 This theorem is referenced by:  boxcutc  7524  supminf  11181  f1omvdconj  16344  fmucndlem  20662  ballotlemsima  28279
 Copyright terms: Public domain W3C validator