Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr Structured version   Unicode version

Theorem eqlkr 32744
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
eqlkr.d  |-  D  =  (Scalar `  W )
eqlkr.k  |-  K  =  ( Base `  D
)
eqlkr.t  |-  .x.  =  ( .r `  D )
eqlkr.v  |-  V  =  ( Base `  W
)
eqlkr.f  |-  F  =  (LFnl `  W )
eqlkr.l  |-  L  =  (LKer `  W )
Assertion
Ref Expression
eqlkr  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( L `  G
)  =  ( L `
 H ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
Distinct variable groups:    x, r, D    x, F    G, r, x    H, r, x    V, r, x    K, r    x, L    .x. , r    x, W
Allowed substitution hints:    .x. ( x)    F( r)    K( x)    L( r)    W( r)

Proof of Theorem eqlkr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl1 991 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  W  e.  LVec )
2 lveclmod 17187 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
3 eqlkr.d . . . . . . 7  |-  D  =  (Scalar `  W )
43lmodrng 16956 . . . . . 6  |-  ( W  e.  LMod  ->  D  e. 
Ring )
52, 4syl 16 . . . . 5  |-  ( W  e.  LVec  ->  D  e. 
Ring )
61, 5syl 16 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  D  e.  Ring )
7 eqlkr.k . . . . 5  |-  K  =  ( Base `  D
)
8 eqid 2443 . . . . 5  |-  ( 1r
`  D )  =  ( 1r `  D
)
97, 8rngidcl 16665 . . . 4  |-  ( D  e.  Ring  ->  ( 1r
`  D )  e.  K )
106, 9syl 16 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  ( 1r `  D )  e.  K
)
11 simp11 1018 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  W  e.  LVec )
1211, 5syl 16 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  D  e.  Ring )
13 simp12l 1101 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  G  e.  F )
14 simp3 990 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  x  e.  V )
15 eqlkr.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
16 eqlkr.f . . . . . . . . 9  |-  F  =  (LFnl `  W )
173, 7, 15, 16lflcl 32709 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  K )
1811, 13, 14, 17syl3anc 1218 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( G `  x
)  e.  K )
19 eqlkr.t . . . . . . . 8  |-  .x.  =  ( .r `  D )
207, 19, 8rngridm 16669 . . . . . . 7  |-  ( ( D  e.  Ring  /\  ( G `  x )  e.  K )  ->  (
( G `  x
)  .x.  ( 1r `  D ) )  =  ( G `  x
) )
2112, 18, 20syl2anc 661 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( ( G `  x )  .x.  ( 1r `  D ) )  =  ( G `  x ) )
22 simp2 989 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  G  =  ( V  X.  { ( 0g
`  D ) } ) )
23 simp13 1020 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( L `  G
)  =  ( L `
 H ) )
2411, 2syl 16 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  W  e.  LMod )
25 eqid 2443 . . . . . . . . . . . . 13  |-  ( 0g
`  D )  =  ( 0g `  D
)
26 eqlkr.l . . . . . . . . . . . . 13  |-  L  =  (LKer `  W )
273, 25, 15, 16, 26lkr0f 32739 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
2824, 13, 27syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( ( L `  G )  =  V  <-> 
G  =  ( V  X.  { ( 0g
`  D ) } ) ) )
2922, 28mpbird 232 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( L `  G
)  =  V )
3023, 29eqtr3d 2477 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( L `  H
)  =  V )
31 simp12r 1102 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  H  e.  F )
323, 25, 15, 16, 26lkr0f 32739 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  H  e.  F )  ->  (
( L `  H
)  =  V  <->  H  =  ( V  X.  { ( 0g `  D ) } ) ) )
3324, 31, 32syl2anc 661 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( ( L `  H )  =  V  <-> 
H  =  ( V  X.  { ( 0g
`  D ) } ) ) )
3430, 33mpbid 210 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  H  =  ( V  X.  { ( 0g
`  D ) } ) )
3522, 34eqtr4d 2478 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  G  =  H )
3635fveq1d 5693 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( G `  x
)  =  ( H `
 x ) )
3721, 36eqtr2d 2476 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( H `  x
)  =  ( ( G `  x ) 
.x.  ( 1r `  D ) ) )
38373expia 1189 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  ( x  e.  V  ->  ( H `  x )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) ) )
3938ralrimiv 2798 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  ( 1r `  D ) ) )
40 oveq2 6099 . . . . . 6  |-  ( r  =  ( 1r `  D )  ->  (
( G `  x
)  .x.  r )  =  ( ( G `
 x )  .x.  ( 1r `  D ) ) )
4140eqeq2d 2454 . . . . 5  |-  ( r  =  ( 1r `  D )  ->  (
( H `  x
)  =  ( ( G `  x ) 
.x.  r )  <->  ( H `  x )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) ) )
4241ralbidv 2735 . . . 4  |-  ( r  =  ( 1r `  D )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) ) )
4342rspcev 3073 . . 3  |-  ( ( ( 1r `  D
)  e.  K  /\  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  ( 1r `  D ) ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
)
4410, 39, 43syl2anc 661 . 2  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
45 simpl1 991 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  W  e.  LVec )
46 simpl2l 1041 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  G  e.  F
)
47 simpr 461 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  G  =/=  ( V  X.  { ( 0g
`  D ) } ) )
483, 25, 8, 15, 16lfl1 32715 . . . 4  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  E. z  e.  V  ( G `  z )  =  ( 1r `  D ) )
4945, 46, 47, 48syl3anc 1218 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  E. z  e.  V  ( G `  z )  =  ( 1r `  D ) )
50 simpl1 991 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  W  e.  LVec )
51 simpl2r 1042 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  H  e.  F )
52 simpr2 995 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  z  e.  V )
533, 7, 15, 16lflcl 32709 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  H  e.  F  /\  z  e.  V )  ->  ( H `  z )  e.  K )
5450, 51, 52, 53syl3anc 1218 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  ( H `  z )  e.  K
)
55 simp11 1018 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  W  e.  LVec )
5655, 2syl 16 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  W  e.  LMod )
57 simp12r 1102 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  H  e.  F )
58 simp12l 1101 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  G  e.  F )
59 simp3 990 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  x  e.  V )
603, 7, 15, 16lflcl 32709 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  K )
6156, 58, 59, 60syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  x )  e.  K
)
62 simp22 1022 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  z  e.  V )
63 eqid 2443 . . . . . . . . . . . . . 14  |-  ( .s
`  W )  =  ( .s `  W
)
643, 7, 19, 15, 63, 16lflmul 32713 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
( G `  x
)  e.  K  /\  z  e.  V )
)  ->  ( H `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
6556, 57, 61, 62, 64syl112anc 1222 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
6665oveq2d 6107 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( H `  x )
( -g `  D ) ( H `  (
( G `  x
) ( .s `  W ) z ) ) )  =  ( ( H `  x
) ( -g `  D
) ( ( G `
 x )  .x.  ( H `  z ) ) ) )
6715, 3, 63, 7lmodvscl 16965 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  ( G `  x )  e.  K  /\  z  e.  V )  ->  (
( G `  x
) ( .s `  W ) z )  e.  V )
6856, 61, 62, 67syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )
( .s `  W
) z )  e.  V )
69 eqid 2443 . . . . . . . . . . . . . 14  |-  ( -g `  D )  =  (
-g `  D )
70 eqid 2443 . . . . . . . . . . . . . 14  |-  ( -g `  W )  =  (
-g `  W )
713, 69, 15, 70, 16lflsub 32712 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
x  e.  V  /\  ( ( G `  x ) ( .s
`  W ) z )  e.  V ) )  ->  ( H `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( H `  x ) ( -g `  D
) ( H `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7256, 57, 59, 68, 71syl112anc 1222 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( H `  x ) ( -g `  D
) ( H `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7315, 70lmodvsubcl 16990 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  x  e.  V  /\  (
( G `  x
) ( .s `  W ) z )  e.  V )  -> 
( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) )  e.  V )
7456, 59, 68, 73syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( x
( -g `  W ) ( ( G `  x ) ( .s
`  W ) z ) )  e.  V
)
753, 69, 15, 70, 16lflsub 32712 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
x  e.  V  /\  ( ( G `  x ) ( .s
`  W ) z )  e.  V ) )  ->  ( G `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( G `  x ) ( -g `  D
) ( G `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7656, 58, 59, 68, 75syl112anc 1222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( G `  x ) ( -g `  D
) ( G `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7755, 58, 59, 17syl3anc 1218 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  x )  e.  K
)
783, 7, 19, 15, 63, 16lflmul 32713 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
( G `  x
)  e.  K  /\  z  e.  V )
)  ->  ( G `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( G `  z ) ) )
7956, 58, 77, 62, 78syl112anc 1222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( G `  z ) ) )
80 simp23 1023 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  z )  =  ( 1r `  D ) )
8180oveq2d 6107 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )  .x.  ( G `  z
) )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) )
8255, 5syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  D  e.  Ring )
8382, 77, 20syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )  .x.  ( 1r `  D
) )  =  ( G `  x ) )
8479, 81, 833eqtrd 2479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( G `  x ) )
8584oveq2d 6107 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )
( -g `  D ) ( G `  (
( G `  x
) ( .s `  W ) z ) ) )  =  ( ( G `  x
) ( -g `  D
) ( G `  x ) ) )
863lmodfgrp 16957 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e.  LMod  ->  D  e. 
Grp )
872, 86syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  LVec  ->  D  e. 
Grp )
8855, 87syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  D  e.  Grp )
897, 25, 69grpsubid 15610 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  Grp  /\  ( G `  x )  e.  K )  -> 
( ( G `  x ) ( -g `  D ) ( G `
 x ) )  =  ( 0g `  D ) )
9088, 77, 89syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )
( -g `  D ) ( G `  x
) )  =  ( 0g `  D ) )
9176, 85, 903eqtrd 2479 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( 0g
`  D ) )
9215, 3, 25, 16, 26ellkr 32734 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LVec  /\  G  e.  F )  ->  (
( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) )  e.  ( L `  G )  <->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( G `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9355, 58, 92syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  ( L `  G
)  <->  ( ( x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( G `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9474, 91, 93mpbir2and 913 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( x
( -g `  W ) ( ( G `  x ) ( .s
`  W ) z ) )  e.  ( L `  G ) )
95 simp13 1020 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( L `  G )  =  ( L `  H ) )
9694, 95eleqtrd 2519 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( x
( -g `  W ) ( ( G `  x ) ( .s
`  W ) z ) )  e.  ( L `  H ) )
9715, 3, 25, 16, 26ellkr 32734 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LVec  /\  H  e.  F )  ->  (
( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) )  e.  ( L `  H )  <->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( H `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9855, 57, 97syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  ( L `  H
)  <->  ( ( x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( H `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9996, 98mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( H `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) )
10099simprd 463 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( 0g
`  D ) )
10172, 100eqtr3d 2477 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( H `  x )
( -g `  D ) ( H `  (
( G `  x
) ( .s `  W ) z ) ) )  =  ( 0g `  D ) )
10266, 101eqtr3d 2477 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( H `  x )
( -g `  D ) ( ( G `  x )  .x.  ( H `  z )
) )  =  ( 0g `  D ) )
1033, 7, 15, 16lflcl 32709 . . . . . . . . . . . 12  |-  ( ( W  e.  LVec  /\  H  e.  F  /\  x  e.  V )  ->  ( H `  x )  e.  K )
10455, 57, 59, 103syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  x )  e.  K
)
105543adant3 1008 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  z )  e.  K
)
1063, 7, 19lmodmcl 16960 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  ( G `  x )  e.  K  /\  ( H `  z )  e.  K )  ->  (
( G `  x
)  .x.  ( H `  z ) )  e.  K )
10756, 77, 105, 106syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )  .x.  ( H `  z
) )  e.  K
)
1087, 25, 69grpsubeq0 15612 . . . . . . . . . . 11  |-  ( ( D  e.  Grp  /\  ( H `  x )  e.  K  /\  (
( G `  x
)  .x.  ( H `  z ) )  e.  K )  ->  (
( ( H `  x ) ( -g `  D ) ( ( G `  x ) 
.x.  ( H `  z ) ) )  =  ( 0g `  D )  <->  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) ) )
10988, 104, 107, 108syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
( H `  x
) ( -g `  D
) ( ( G `
 x )  .x.  ( H `  z ) ) )  =  ( 0g `  D )  <-> 
( H `  x
)  =  ( ( G `  x ) 
.x.  ( H `  z ) ) ) )
110102, 109mpbid 210 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
1111103expia 1189 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  ( x  e.  V  ->  ( H `
 x )  =  ( ( G `  x )  .x.  ( H `  z )
) ) )
112111ralrimiv 2798 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
113 oveq2 6099 . . . . . . . . . 10  |-  ( r  =  ( H `  z )  ->  (
( G `  x
)  .x.  r )  =  ( ( G `
 x )  .x.  ( H `  z ) ) )
114113eqeq2d 2454 . . . . . . . . 9  |-  ( r  =  ( H `  z )  ->  (
( H `  x
)  =  ( ( G `  x ) 
.x.  r )  <->  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) ) )
115114ralbidv 2735 . . . . . . . 8  |-  ( r  =  ( H `  z )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) ) )
116115rspcev 3073 . . . . . . 7  |-  ( ( ( H `  z
)  e.  K  /\  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  ( H `  z ) ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
)
11754, 112, 116syl2anc 661 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
)
1181173exp2 1205 . . . . 5  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( L `  G
)  =  ( L `
 H ) )  ->  ( G  =/=  ( V  X.  {
( 0g `  D
) } )  -> 
( z  e.  V  ->  ( ( G `  z )  =  ( 1r `  D )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) ) ) ) )
119118imp 429 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( z  e.  V  ->  ( ( G `  z )  =  ( 1r `  D )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
) ) )
120119rexlimdv 2840 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( E. z  e.  V  ( G `  z )  =  ( 1r `  D )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) ) )
12149, 120mpd 15 . 2  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
12244, 121pm2.61dane 2689 1  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( L `  G
)  =  ( L `
 H ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716   {csn 3877    X. cxp 4838   ` cfv 5418  (class class class)co 6091   Basecbs 14174   .rcmulr 14239  Scalarcsca 14241   .scvsca 14242   0gc0g 14378   Grpcgrp 15410   -gcsg 15413   1rcur 16603   Ringcrg 16645   LModclmod 16948   LVecclvec 17183  LFnlclfn 32702  LKerclk 32730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-tpos 6745  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-sbg 15547  df-cmn 16279  df-abl 16280  df-mgp 16592  df-ur 16604  df-rng 16647  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-invr 16764  df-drng 16834  df-lmod 16950  df-lvec 17184  df-lfl 32703  df-lkr 32731
This theorem is referenced by:  eqlkr2  32745  eqlkr3  32746
  Copyright terms: Public domain W3C validator