MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgval Structured version   Unicode version

Theorem eqgval 15723
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgval  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S ) ) )

Proof of Theorem eqgval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4  |-  X  =  ( Base `  G
)
2 eqgval.n . . . 4  |-  N  =  ( invg `  G )
3 eqgval.p . . . 4  |-  .+  =  ( +g  `  G )
4 eqgval.r . . . 4  |-  R  =  ( G ~QG  S )
51, 2, 3, 4eqgfval 15722 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
65breqd 4300 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B ) )
7 brabv 6131 . . . 4  |-  ( A { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } B  ->  ( A  e.  _V  /\  B  e.  _V )
)
87adantl 463 . . 3  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
9 simpr1 989 . . . . 5  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  A  e.  X )
10 elex 2979 . . . . 5  |-  ( A  e.  X  ->  A  e.  _V )
119, 10syl 16 . . . 4  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  A  e.  _V )
12 simpr2 990 . . . . 5  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  B  e.  X )
13 elex 2979 . . . . 5  |-  ( B  e.  X  ->  B  e.  _V )
1412, 13syl 16 . . . 4  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  B  e.  _V )
1511, 14jca 529 . . 3  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  -> 
( A  e.  _V  /\  B  e.  _V )
)
16 vex 2973 . . . . . . . 8  |-  x  e. 
_V
17 vex 2973 . . . . . . . 8  |-  y  e. 
_V
1816, 17prss 4024 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
19 eleq1 2501 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  X  <->  A  e.  X ) )
20 eleq1 2501 . . . . . . . 8  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
2119, 20bi2anan9 863 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  X  /\  y  e.  X )  <->  ( A  e.  X  /\  B  e.  X ) ) )
2218, 21syl5bbr 259 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( { x ,  y }  C_  X  <->  ( A  e.  X  /\  B  e.  X )
) )
23 fveq2 5688 . . . . . . . 8  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
24 id 22 . . . . . . . 8  |-  ( y  =  B  ->  y  =  B )
2523, 24oveqan12d 6109 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( N `  x )  .+  y
)  =  ( ( N `  A ) 
.+  B ) )
2625eleq1d 2507 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( ( N `
 x )  .+  y )  e.  S  <->  ( ( N `  A
)  .+  B )  e.  S ) )
2722, 26anbi12d 705 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
)  <->  ( ( A  e.  X  /\  B  e.  X )  /\  (
( N `  A
)  .+  B )  e.  S ) ) )
28 df-3an 962 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S )  <-> 
( ( A  e.  X  /\  B  e.  X )  /\  (
( N `  A
)  .+  B )  e.  S ) )
2927, 28syl6bbr 263 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
)  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
30 eqid 2441 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }
3129, 30brabga 4601 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
328, 15, 31pm5.21nd 888 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
336, 32bitrd 253 1  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    C_ wss 3325   {cpr 3876   class class class wbr 4289   {copab 4346   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   invgcminusg 15407   ~QG cqg 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-eqg 15673
This theorem is referenced by:  eqger  15724  eqglact  15725  eqgid  15726  eqgcpbl  15728  gastacos  15821  orbstafun  15822  sylow2blem1  16112  sylow2blem3  16114  eqgabl  16312  tgpconcompeqg  19641  tgpconcomp  19642  divstgpopn  19649
  Copyright terms: Public domain W3C validator