MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqger Structured version   Visualization version   Unicode version

Theorem eqger 16915
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqger  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)

Proof of Theorem eqger
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . 4  |-  .~  =  ( G ~QG  Y )
21releqg 16912 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
4 subgrcl 16870 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
65subgss 16866 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
7 eqid 2461 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
8 eqid 2461 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
95, 7, 8, 1eqgval 16914 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) ) )
104, 6, 9syl2anc 671 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y ) ) )
1110biimpa 491 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) )
1211simp2d 1027 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  e.  X )
1311simp1d 1026 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  x  e.  X )
144adantr 471 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  G  e.  Grp )
155, 7grpinvcl 16759 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  x
)  e.  X )
1614, 13, 15syl2anc 671 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  x
)  e.  X )
175, 8, 7grpinvadd 16780 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  x
)  e.  X  /\  y  e.  X )  ->  ( ( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
1814, 16, 12, 17syl3anc 1276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
195, 7grpinvinv 16769 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2014, 13, 19syl2anc 671 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2120oveq2d 6330 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) ( ( invg `  G ) `
 ( ( invg `  G ) `
 x ) ) )  =  ( ( ( invg `  G ) `  y
) ( +g  `  G
) x ) )
2218, 21eqtrd 2495 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) x ) )
2311simp3d 1028 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )
247subginvcl 16874 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2523, 24syldan 477 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2622, 25eqeltrrd 2540 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y )
276adantr 471 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  Y  C_  X )
285, 7, 8, 1eqgval 16914 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) x )  e.  Y
) ) )
2914, 27, 28syl2anc 671 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y ) ) )
3012, 13, 26, 29mpbir3and 1197 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  .~  x )
3113adantrr 728 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  e.  X
)
325, 7, 8, 1eqgval 16914 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
334, 6, 32syl2anc 671 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
3433biimpa 491 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  y  .~  z )  ->  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )
3534adantrl 727 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) )
3635simp2d 1027 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  z  e.  X
)
374adantr 471 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  G  e.  Grp )
3837, 31, 15syl2anc 671 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 x )  e.  X )
3912adantrr 728 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  y  e.  X
)
405, 7grpinvcl 16759 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
4137, 39, 40syl2anc 671 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 y )  e.  X )
425, 8grpcl 16727 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)
4337, 41, 36, 42syl3anc 1276 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)
445, 8grpass 16728 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 x )  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  x )
( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
4537, 38, 39, 43, 44syl13anc 1278 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
46 eqid 2461 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
475, 8, 46, 7grprinv 16761 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
4837, 39, 47syl2anc 671 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( 0g `  G ) )
4948oveq1d 6329 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
505, 8grpass 16728 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
5137, 39, 41, 36, 50syl13anc 1278 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
525, 8, 46grplid 16744 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
5337, 36, 52syl2anc 671 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( 0g
`  G ) ( +g  `  G ) z )  =  z )
5449, 51, 533eqtr3d 2503 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  z )
5554oveq2d 6330 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  ( ( ( invg `  G ) `  x
) ( +g  `  G
) z ) )
5645, 55eqtrd 2495 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z ) )
57 simpl 463 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  e.  (SubGrp `  G ) )
5823adantrr 728 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  Y
)
5935simp3d 1028 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  Y
)
608subgcl 16875 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  Y )
6157, 58, 59, 60syl3anc 1276 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  Y )
6256, 61eqeltrrd 2540 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) z )  e.  Y
)
636adantr 471 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  C_  X
)
645, 7, 8, 1eqgval 16914 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6537, 63, 64syl2anc 671 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( x  .~  z 
<->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6631, 36, 62, 65mpbir3and 1197 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  .~  z
)
675, 8, 46, 7grplinv 16760 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
684, 67sylan 478 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  =  ( 0g `  G
) )
6946subg0cl 16873 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
7069adantr 471 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  ( 0g `  G )  e.  Y )
7168, 70eqeltrd 2539 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )
7271ex 440 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  ->  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
7372pm4.71rd 645 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
745, 7, 8, 1eqgval 16914 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
) ) )
754, 6, 74syl2anc 671 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) ) )
76 df-3an 993 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( x  e.  X  /\  x  e.  X )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
77 anidm 654 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
7877anbi2ci 707 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )  <->  ( (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7976, 78bitri 257 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
8075, 79syl6bb 269 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
8173, 80bitr4d 264 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  x  .~  x
) )
823, 30, 66, 81iserd 7414 1  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897    C_ wss 3415   class class class wbr 4415   Rel wrel 4857   ` cfv 5600  (class class class)co 6314    Er wer 7385   Basecbs 15169   +g cplusg 15238   0gc0g 15386   Grpcgrp 16717   invgcminusg 16718  SubGrpcsubg 16859   ~QG cqg 16861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-nn 10637  df-2 10695  df-ndx 15172  df-slot 15173  df-base 15174  df-sets 15175  df-ress 15176  df-plusg 15251  df-0g 15388  df-mgm 16536  df-sgrp 16575  df-mnd 16585  df-grp 16721  df-minusg 16722  df-subg 16862  df-eqg 16864
This theorem is referenced by:  qusgrp  16920  qusadd  16922  lagsubg2  16926  lagsubg  16927  orbstafun  17013  orbstaval  17014  orbsta  17015  orbsta2  17016  sylow2blem1  17320  sylow2blem2  17321  sylow2blem3  17322  sylow3lem3  17329  sylow3lem4  17330  2idlcpbl  18506  qus1  18507  qusrhm  18509  quscrng  18512  zndvds  19168  cldsubg  21173  qustgpopn  21182  qustgphaus  21185  tgptsmscls  21212
  Copyright terms: Public domain W3C validator