MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqger Structured version   Unicode version

Theorem eqger 15720
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqger  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)

Proof of Theorem eqger
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . 4  |-  .~  =  ( G ~QG  Y )
21releqg 15717 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
4 subgrcl 15675 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
65subgss 15671 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
7 eqid 2437 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
8 eqid 2437 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
95, 7, 8, 1eqgval 15719 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) ) )
104, 6, 9syl2anc 661 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y ) ) )
1110biimpa 484 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) )
1211simp2d 1001 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  e.  X )
1311simp1d 1000 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  x  e.  X )
144adantr 465 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  G  e.  Grp )
155, 7grpinvcl 15572 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  x
)  e.  X )
1614, 13, 15syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  x
)  e.  X )
175, 8, 7grpinvadd 15593 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  x
)  e.  X  /\  y  e.  X )  ->  ( ( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
1814, 16, 12, 17syl3anc 1218 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
195, 7grpinvinv 15582 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2014, 13, 19syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2120oveq2d 6102 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) ( ( invg `  G ) `
 ( ( invg `  G ) `
 x ) ) )  =  ( ( ( invg `  G ) `  y
) ( +g  `  G
) x ) )
2218, 21eqtrd 2469 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) x ) )
2311simp3d 1002 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )
247subginvcl 15679 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2523, 24syldan 470 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2622, 25eqeltrrd 2512 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y )
276adantr 465 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  Y  C_  X )
285, 7, 8, 1eqgval 15719 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) x )  e.  Y
) ) )
2914, 27, 28syl2anc 661 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y ) ) )
3012, 13, 26, 29mpbir3and 1171 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  .~  x )
3113adantrr 716 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  e.  X
)
325, 7, 8, 1eqgval 15719 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
334, 6, 32syl2anc 661 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
3433biimpa 484 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  y  .~  z )  ->  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )
3534adantrl 715 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) )
3635simp2d 1001 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  z  e.  X
)
374adantr 465 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  G  e.  Grp )
3837, 31, 15syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 x )  e.  X )
3912adantrr 716 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  y  e.  X
)
405, 7grpinvcl 15572 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
4137, 39, 40syl2anc 661 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 y )  e.  X )
425, 8grpcl 15540 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)
4337, 41, 36, 42syl3anc 1218 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)
445, 8grpass 15541 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 x )  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  x )
( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
4537, 38, 39, 43, 44syl13anc 1220 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
46 eqid 2437 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
475, 8, 46, 7grprinv 15574 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
4837, 39, 47syl2anc 661 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( 0g `  G ) )
4948oveq1d 6101 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
505, 8grpass 15541 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
5137, 39, 41, 36, 50syl13anc 1220 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
525, 8, 46grplid 15557 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
5337, 36, 52syl2anc 661 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( 0g
`  G ) ( +g  `  G ) z )  =  z )
5449, 51, 533eqtr3d 2477 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  z )
5554oveq2d 6102 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  ( ( ( invg `  G ) `  x
) ( +g  `  G
) z ) )
5645, 55eqtrd 2469 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z ) )
57 simpl 457 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  e.  (SubGrp `  G ) )
5823adantrr 716 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  Y
)
5935simp3d 1002 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  Y
)
608subgcl 15680 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  Y )
6157, 58, 59, 60syl3anc 1218 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  Y )
6256, 61eqeltrrd 2512 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) z )  e.  Y
)
636adantr 465 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  C_  X
)
645, 7, 8, 1eqgval 15719 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6537, 63, 64syl2anc 661 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( x  .~  z 
<->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6631, 36, 62, 65mpbir3and 1171 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  .~  z
)
675, 8, 46, 7grplinv 15573 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
684, 67sylan 471 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  =  ( 0g `  G
) )
6946subg0cl 15678 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
7069adantr 465 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  ( 0g `  G )  e.  Y )
7168, 70eqeltrd 2511 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )
7271ex 434 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  ->  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
7372pm4.71rd 635 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
745, 7, 8, 1eqgval 15719 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
) ) )
754, 6, 74syl2anc 661 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) ) )
76 df-3an 967 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( x  e.  X  /\  x  e.  X )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
77 anidm 644 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
7877anbi2ci 696 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )  <->  ( (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7976, 78bitri 249 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
8075, 79syl6bb 261 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
8173, 80bitr4d 256 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  x  .~  x
) )
823, 30, 66, 81iserd 7119 1  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3321   class class class wbr 4285   Rel wrel 4837   ` cfv 5411  (class class class)co 6086    Er wer 7090   Basecbs 14166   +g cplusg 14230   0gc0g 14370   Grpcgrp 15402   invgcminusg 15403  SubGrpcsubg 15664   ~QG cqg 15666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-0g 14372  df-mnd 15407  df-grp 15534  df-minusg 15535  df-subg 15667  df-eqg 15669
This theorem is referenced by:  divsgrp  15725  divsadd  15727  lagsubg2  15731  lagsubg  15732  orbstafun  15818  orbstaval  15819  orbsta  15820  orbsta2  15821  sylow2blem1  16108  sylow2blem2  16109  sylow2blem3  16110  sylow3lem3  16117  sylow3lem4  16118  2idlcpbl  17290  divs1  17291  divsrhm  17293  divscrng  17296  zndvds  17951  cldsubg  19650  divstgpopn  19659  divstgphaus  19662  tgptsmscls  19693
  Copyright terms: Public domain W3C validator