MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqger Structured version   Unicode version

Theorem eqger 16453
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqger  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)

Proof of Theorem eqger
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . 4  |-  .~  =  ( G ~QG  Y )
21releqg 16450 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
4 subgrcl 16408 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
65subgss 16404 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
7 eqid 2454 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
8 eqid 2454 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
95, 7, 8, 1eqgval 16452 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) ) )
104, 6, 9syl2anc 659 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y ) ) )
1110biimpa 482 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
x  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  Y
) )
1211simp2d 1007 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  e.  X )
1311simp1d 1006 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  x  e.  X )
144adantr 463 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  G  e.  Grp )
155, 7grpinvcl 16297 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  x
)  e.  X )
1614, 13, 15syl2anc 659 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  x
)  e.  X )
175, 8, 7grpinvadd 16318 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  x
)  e.  X  /\  y  e.  X )  ->  ( ( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
1814, 16, 12, 17syl3anc 1226 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) ( ( invg `  G ) `  (
( invg `  G ) `  x
) ) ) )
195, 7grpinvinv 16307 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2014, 13, 19syl2anc 659 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( invg `  G ) `  x
) )  =  x )
2120oveq2d 6286 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) ( ( invg `  G ) `
 ( ( invg `  G ) `
 x ) ) )  =  ( ( ( invg `  G ) `  y
) ( +g  `  G
) x ) )
2218, 21eqtrd 2495 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) x ) )
2311simp3d 1008 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )
247subginvcl 16412 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2523, 24syldan 468 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( invg `  G ) `  (
( ( invg `  G ) `  x
) ( +g  `  G
) y ) )  e.  Y )
2622, 25eqeltrrd 2543 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y )
276adantr 463 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  Y  C_  X )
285, 7, 8, 1eqgval 16452 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) x )  e.  Y
) ) )
2914, 27, 28syl2anc 659 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) x )  e.  Y ) ) )
3012, 13, 26, 29mpbir3and 1177 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  .~  y )  ->  y  .~  x )
3113adantrr 714 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  e.  X
)
325, 7, 8, 1eqgval 16452 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
334, 6, 32syl2anc 659 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
3433biimpa 482 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  y  .~  z )  ->  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )
3534adantrl 713 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) )
3635simp2d 1007 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  z  e.  X
)
374adantr 463 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  G  e.  Grp )
3837, 31, 15syl2anc 659 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 x )  e.  X )
3912adantrr 714 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  y  e.  X
)
405, 7grpinvcl 16297 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
4137, 39, 40syl2anc 659 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( invg `  G ) `
 y )  e.  X )
425, 8grpcl 16265 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)
4337, 41, 36, 42syl3anc 1226 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)
445, 8grpass 16266 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 x )  e.  X  /\  y  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  x )
( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
4537, 38, 39, 43, 44syl13anc 1228 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
46 eqid 2454 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
475, 8, 46, 7grprinv 16299 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
4837, 39, 47syl2anc 659 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( 0g `  G ) )
4948oveq1d 6285 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
505, 8grpass 16266 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
5137, 39, 41, 36, 50syl13anc 1228 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
525, 8, 46grplid 16282 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
5337, 36, 52syl2anc 659 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( 0g
`  G ) ( +g  `  G ) z )  =  z )
5449, 51, 533eqtr3d 2503 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( y ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  z )
5554oveq2d 6286 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  ( ( ( invg `  G ) `  x
) ( +g  `  G
) z ) )
5645, 55eqtrd 2495 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z ) )
57 simpl 455 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  e.  (SubGrp `  G ) )
5823adantrr 714 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  Y
)
5935simp3d 1008 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  Y
)
608subgcl 16413 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  Y  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  Y )
6157, 58, 59, 60syl3anc 1226 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) y ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  Y )
6256, 61eqeltrrd 2543 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( ( ( invg `  G
) `  x )
( +g  `  G ) z )  e.  Y
)
636adantr 463 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  Y  C_  X
)
645, 7, 8, 1eqgval 16452 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6537, 63, 64syl2anc 659 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  ( x  .~  z 
<->  ( x  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) z )  e.  Y
) ) )
6631, 36, 62, 65mpbir3and 1177 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  .~  y  /\  y  .~  z ) )  ->  x  .~  z
)
675, 8, 46, 7grplinv 16298 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  =  ( 0g `  G ) )
684, 67sylan 469 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  =  ( 0g `  G
) )
6946subg0cl 16411 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
7069adantr 463 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  ( 0g `  G )  e.  Y )
7168, 70eqeltrd 2542 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )
7271ex 432 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  ->  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
7372pm4.71rd 633 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
745, 7, 8, 1eqgval 16452 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
) ) )
754, 6, 74syl2anc 659 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) ) )
76 df-3an 973 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( x  e.  X  /\  x  e.  X )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y ) )
77 anidm 642 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
7877anbi2ci 694 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y )  <->  ( (
( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
7976, 78bitri 249 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) x )  e.  Y
)  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) )
8075, 79syl6bb 261 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  .~  x  <->  ( ( ( ( invg `  G ) `  x
) ( +g  `  G
) x )  e.  Y  /\  x  e.  X ) ) )
8173, 80bitr4d 256 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  X  <->  x  .~  x
) )
823, 30, 66, 81iserd 7329 1  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    C_ wss 3461   class class class wbr 4439   Rel wrel 4993   ` cfv 5570  (class class class)co 6270    Er wer 7300   Basecbs 14719   +g cplusg 14787   0gc0g 14932   Grpcgrp 16255   invgcminusg 16256  SubGrpcsubg 16397   ~QG cqg 16399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-subg 16400  df-eqg 16402
This theorem is referenced by:  qusgrp  16458  qusadd  16460  lagsubg2  16464  lagsubg  16465  orbstafun  16551  orbstaval  16552  orbsta  16553  orbsta2  16554  sylow2blem1  16842  sylow2blem2  16843  sylow2blem3  16844  sylow3lem3  16851  sylow3lem4  16852  2idlcpbl  18080  qus1  18081  qusrhm  18083  quscrng  18086  zndvds  18764  cldsubg  20778  qustgpopn  20787  qustgphaus  20790  tgptsmscls  20821
  Copyright terms: Public domain W3C validator