MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgcpbl Structured version   Unicode version

Theorem eqgcpbl 15728
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqgcpbl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
eqgcpbl  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 15706 . . . . . 6  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
21adantr 462 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  Y  e.  (SubGrp `  G
) )
3 subgrcl 15679 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
42, 3syl 16 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  G  e.  Grp )
5 simprl 750 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  A  .~  C )
6 eqger.x . . . . . . . . 9  |-  X  =  ( Base `  G
)
76subgss 15675 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
82, 7syl 16 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  Y  C_  X )
9 eqid 2441 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
10 eqgcpbl.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
11 eqger.r . . . . . . . 8  |-  .~  =  ( G ~QG  Y )
126, 9, 10, 11eqgval 15723 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  C  <->  ( A  e.  X  /\  C  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
) ) )
134, 8, 12syl2anc 656 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  .~  C  <->  ( A  e.  X  /\  C  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
) ) )
145, 13mpbid 210 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  e.  X  /\  C  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
) )
1514simp1d 995 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  A  e.  X )
16 simprr 751 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  B  .~  D )
176, 9, 10, 11eqgval 15723 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( B  .~  D  <->  ( B  e.  X  /\  D  e.  X  /\  ( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
) ) )
184, 8, 17syl2anc 656 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( B  .~  D  <->  ( B  e.  X  /\  D  e.  X  /\  ( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
) ) )
1916, 18mpbid 210 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( B  e.  X  /\  D  e.  X  /\  ( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
) )
2019simp1d 995 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  B  e.  X )
216, 10grpcl 15544 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B
)  e.  X )
224, 15, 20, 21syl3anc 1213 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  .+  B
)  e.  X )
2314simp2d 996 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  C  e.  X )
2419simp2d 996 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  D  e.  X )
256, 10grpcl 15544 . . . 4  |-  ( ( G  e.  Grp  /\  C  e.  X  /\  D  e.  X )  ->  ( C  .+  D
)  e.  X )
264, 23, 24, 25syl3anc 1213 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( C  .+  D
)  e.  X )
276, 10, 9grpinvadd 15597 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( ( invg `  G ) `  ( A  .+  B ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) ) )
284, 15, 20, 27syl3anc 1213 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( invg `  G ) `  ( A  .+  B ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) ) )
2928oveq1d 6105 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 ( A  .+  B ) )  .+  ( C  .+  D ) )  =  ( ( ( ( invg `  G ) `  B
)  .+  ( ( invg `  G ) `
 A ) ) 
.+  ( C  .+  D ) ) )
306, 9grpinvcl 15576 . . . . . . 7  |-  ( ( G  e.  Grp  /\  B  e.  X )  ->  ( ( invg `  G ) `  B
)  e.  X )
314, 20, 30syl2anc 656 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( invg `  G ) `  B
)  e.  X )
326, 9grpinvcl 15576 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
334, 15, 32syl2anc 656 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( invg `  G ) `  A
)  e.  X )
346, 10grpass 15545 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 B )  e.  X  /\  ( ( invg `  G
) `  A )  e.  X  /\  ( C  .+  D )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) )  .+  ( C  .+  D ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) ) ) )
354, 31, 33, 26, 34syl13anc 1215 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) )  .+  ( C  .+  D ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) ) ) )
3629, 35eqtrd 2473 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 ( A  .+  B ) )  .+  ( C  .+  D ) )  =  ( ( ( invg `  G ) `  B
)  .+  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) ) ) )
376, 10grpass 15545 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 A )  e.  X  /\  C  e.  X  /\  D  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  D
)  =  ( ( ( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )
384, 33, 23, 24, 37syl13anc 1215 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  D
)  =  ( ( ( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )
3938oveq1d 6105 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( ( invg `  G ) `  A
)  .+  C )  .+  D )  .+  (
( invg `  G ) `  B
) )  =  ( ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) )  .+  ( ( invg `  G
) `  B )
) )
406, 10grpcl 15544 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  A
)  e.  X  /\  C  e.  X )  ->  ( ( ( invg `  G ) `
 A )  .+  C )  e.  X
)
414, 33, 23, 40syl3anc 1213 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 A )  .+  C )  e.  X
)
426, 10grpass 15545 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( ( ( invg `  G
) `  A )  .+  C )  e.  X  /\  D  e.  X  /\  ( ( invg `  G ) `  B
)  e.  X ) )  ->  ( (
( ( ( invg `  G ) `
 A )  .+  C )  .+  D
)  .+  ( ( invg `  G ) `
 B ) )  =  ( ( ( ( invg `  G ) `  A
)  .+  C )  .+  ( D  .+  (
( invg `  G ) `  B
) ) ) )
434, 41, 24, 31, 42syl13anc 1215 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( ( invg `  G ) `  A
)  .+  C )  .+  D )  .+  (
( invg `  G ) `  B
) )  =  ( ( ( ( invg `  G ) `
 A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) ) )
4439, 43eqtr3d 2475 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( C  .+  D
) )  .+  (
( invg `  G ) `  B
) )  =  ( ( ( ( invg `  G ) `
 A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) ) )
4514simp3d 997 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
)
4619simp3d 997 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
)
47 simpl 454 . . . . . . . . 9  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  Y  e.  (NrmSGrp `  G
) )
486, 10nsgbi 15705 . . . . . . . . 9  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( ( invg `  G ) `
 B )  e.  X  /\  D  e.  X )  ->  (
( ( ( invg `  G ) `
 B )  .+  D )  e.  Y  <->  ( D  .+  ( ( invg `  G
) `  B )
)  e.  Y ) )
4947, 31, 24, 48syl3anc 1213 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  B )  .+  D )  e.  Y  <->  ( D  .+  ( ( invg `  G
) `  B )
)  e.  Y ) )
5046, 49mpbid 210 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( D  .+  (
( invg `  G ) `  B
) )  e.  Y
)
5110subgcl 15684 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  A
)  .+  C )  e.  Y  /\  ( D  .+  ( ( invg `  G ) `
 B ) )  e.  Y )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) )  e.  Y )
522, 45, 50, 51syl3anc 1213 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) )  e.  Y )
5344, 52eqeltrd 2515 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( C  .+  D
) )  .+  (
( invg `  G ) `  B
) )  e.  Y
)
546, 10grpcl 15544 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  A
)  e.  X  /\  ( C  .+  D )  e.  X )  -> 
( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) )  e.  X )
554, 33, 26, 54syl3anc 1213 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) )  e.  X )
566, 10nsgbi 15705 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) )  e.  X  /\  ( ( invg `  G
) `  B )  e.  X )  ->  (
( ( ( ( invg `  G
) `  A )  .+  ( C  .+  D
) )  .+  (
( invg `  G ) `  B
) )  e.  Y  <->  ( ( ( invg `  G ) `  B
)  .+  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )  e.  Y ) )
5747, 55, 31, 56syl3anc 1213 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( ( invg `  G ) `  A
)  .+  ( C  .+  D ) )  .+  ( ( invg `  G ) `  B
) )  e.  Y  <->  ( ( ( invg `  G ) `  B
)  .+  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )  e.  Y ) )
5853, 57mpbid 210 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 B )  .+  ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) ) )  e.  Y
)
5936, 58eqeltrd 2515 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 ( A  .+  B ) )  .+  ( C  .+  D ) )  e.  Y )
606, 9, 10, 11eqgval 15723 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( ( A  .+  B )  .~  ( C  .+  D )  <->  ( ( A  .+  B )  e.  X  /\  ( C 
.+  D )  e.  X  /\  ( ( ( invg `  G ) `  ( A  .+  B ) ) 
.+  ( C  .+  D ) )  e.  Y ) ) )
614, 8, 60syl2anc 656 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( A  .+  B )  .~  ( C  .+  D )  <->  ( ( A  .+  B )  e.  X  /\  ( C 
.+  D )  e.  X  /\  ( ( ( invg `  G ) `  ( A  .+  B ) ) 
.+  ( C  .+  D ) )  e.  Y ) ) )
6222, 26, 59, 61mpbir3and 1166 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  .+  B
)  .~  ( C  .+  D ) )
6362ex 434 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    C_ wss 3325   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   Grpcgrp 15406   invgcminusg 15407  SubGrpcsubg 15668  NrmSGrpcnsg 15669   ~QG cqg 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-grp 15538  df-minusg 15539  df-subg 15671  df-nsg 15672  df-eqg 15673
This theorem is referenced by:  divsgrp  15729  divsadd  15731  divs1  17295
  Copyright terms: Public domain W3C validator