MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgcpbl Structured version   Unicode version

Theorem eqgcpbl 15849
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqgcpbl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
eqgcpbl  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 15827 . . . . . 6  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
21adantr 465 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  Y  e.  (SubGrp `  G
) )
3 subgrcl 15800 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
42, 3syl 16 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  G  e.  Grp )
5 simprl 755 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  A  .~  C )
6 eqger.x . . . . . . . . 9  |-  X  =  ( Base `  G
)
76subgss 15796 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
82, 7syl 16 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  Y  C_  X )
9 eqid 2452 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
10 eqgcpbl.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
11 eqger.r . . . . . . . 8  |-  .~  =  ( G ~QG  Y )
126, 9, 10, 11eqgval 15844 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  C  <->  ( A  e.  X  /\  C  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
) ) )
134, 8, 12syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  .~  C  <->  ( A  e.  X  /\  C  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
) ) )
145, 13mpbid 210 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  e.  X  /\  C  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
) )
1514simp1d 1000 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  A  e.  X )
16 simprr 756 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  B  .~  D )
176, 9, 10, 11eqgval 15844 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( B  .~  D  <->  ( B  e.  X  /\  D  e.  X  /\  ( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
) ) )
184, 8, 17syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( B  .~  D  <->  ( B  e.  X  /\  D  e.  X  /\  ( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
) ) )
1916, 18mpbid 210 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( B  e.  X  /\  D  e.  X  /\  ( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
) )
2019simp1d 1000 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  B  e.  X )
216, 10grpcl 15665 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B
)  e.  X )
224, 15, 20, 21syl3anc 1219 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  .+  B
)  e.  X )
2314simp2d 1001 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  C  e.  X )
2419simp2d 1001 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  D  e.  X )
256, 10grpcl 15665 . . . 4  |-  ( ( G  e.  Grp  /\  C  e.  X  /\  D  e.  X )  ->  ( C  .+  D
)  e.  X )
264, 23, 24, 25syl3anc 1219 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( C  .+  D
)  e.  X )
276, 10, 9grpinvadd 15718 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( ( invg `  G ) `  ( A  .+  B ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) ) )
284, 15, 20, 27syl3anc 1219 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( invg `  G ) `  ( A  .+  B ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) ) )
2928oveq1d 6210 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 ( A  .+  B ) )  .+  ( C  .+  D ) )  =  ( ( ( ( invg `  G ) `  B
)  .+  ( ( invg `  G ) `
 A ) ) 
.+  ( C  .+  D ) ) )
306, 9grpinvcl 15697 . . . . . . 7  |-  ( ( G  e.  Grp  /\  B  e.  X )  ->  ( ( invg `  G ) `  B
)  e.  X )
314, 20, 30syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( invg `  G ) `  B
)  e.  X )
326, 9grpinvcl 15697 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
334, 15, 32syl2anc 661 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( invg `  G ) `  A
)  e.  X )
346, 10grpass 15666 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 B )  e.  X  /\  ( ( invg `  G
) `  A )  e.  X  /\  ( C  .+  D )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) )  .+  ( C  .+  D ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) ) ) )
354, 31, 33, 26, 34syl13anc 1221 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  B )  .+  ( ( invg `  G ) `  A
) )  .+  ( C  .+  D ) )  =  ( ( ( invg `  G
) `  B )  .+  ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) ) ) )
3629, 35eqtrd 2493 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 ( A  .+  B ) )  .+  ( C  .+  D ) )  =  ( ( ( invg `  G ) `  B
)  .+  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) ) ) )
376, 10grpass 15666 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 A )  e.  X  /\  C  e.  X  /\  D  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  D
)  =  ( ( ( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )
384, 33, 23, 24, 37syl13anc 1221 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  D
)  =  ( ( ( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )
3938oveq1d 6210 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( ( invg `  G ) `  A
)  .+  C )  .+  D )  .+  (
( invg `  G ) `  B
) )  =  ( ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) )  .+  ( ( invg `  G
) `  B )
) )
406, 10grpcl 15665 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  A
)  e.  X  /\  C  e.  X )  ->  ( ( ( invg `  G ) `
 A )  .+  C )  e.  X
)
414, 33, 23, 40syl3anc 1219 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 A )  .+  C )  e.  X
)
426, 10grpass 15666 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( ( ( invg `  G
) `  A )  .+  C )  e.  X  /\  D  e.  X  /\  ( ( invg `  G ) `  B
)  e.  X ) )  ->  ( (
( ( ( invg `  G ) `
 A )  .+  C )  .+  D
)  .+  ( ( invg `  G ) `
 B ) )  =  ( ( ( ( invg `  G ) `  A
)  .+  C )  .+  ( D  .+  (
( invg `  G ) `  B
) ) ) )
434, 41, 24, 31, 42syl13anc 1221 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( ( invg `  G ) `  A
)  .+  C )  .+  D )  .+  (
( invg `  G ) `  B
) )  =  ( ( ( ( invg `  G ) `
 A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) ) )
4439, 43eqtr3d 2495 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( C  .+  D
) )  .+  (
( invg `  G ) `  B
) )  =  ( ( ( ( invg `  G ) `
 A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) ) )
4514simp3d 1002 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 A )  .+  C )  e.  Y
)
4619simp3d 1002 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 B )  .+  D )  e.  Y
)
47 simpl 457 . . . . . . . . 9  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  ->  Y  e.  (NrmSGrp `  G
) )
486, 10nsgbi 15826 . . . . . . . . 9  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( ( invg `  G ) `
 B )  e.  X  /\  D  e.  X )  ->  (
( ( ( invg `  G ) `
 B )  .+  D )  e.  Y  <->  ( D  .+  ( ( invg `  G
) `  B )
)  e.  Y ) )
4947, 31, 24, 48syl3anc 1219 . . . . . . . 8  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  B )  .+  D )  e.  Y  <->  ( D  .+  ( ( invg `  G
) `  B )
)  e.  Y ) )
5046, 49mpbid 210 . . . . . . 7  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( D  .+  (
( invg `  G ) `  B
) )  e.  Y
)
5110subgcl 15805 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( ( invg `  G ) `  A
)  .+  C )  e.  Y  /\  ( D  .+  ( ( invg `  G ) `
 B ) )  e.  Y )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) )  e.  Y )
522, 45, 50, 51syl3anc 1219 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  C )  .+  ( D  .+  ( ( invg `  G ) `
 B ) ) )  e.  Y )
5344, 52eqeltrd 2540 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  ( C  .+  D
) )  .+  (
( invg `  G ) `  B
) )  e.  Y
)
546, 10grpcl 15665 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  A
)  e.  X  /\  ( C  .+  D )  e.  X )  -> 
( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) )  e.  X )
554, 33, 26, 54syl3anc 1219 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) )  e.  X )
566, 10nsgbi 15826 . . . . . 6  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) )  e.  X  /\  ( ( invg `  G
) `  B )  e.  X )  ->  (
( ( ( ( invg `  G
) `  A )  .+  ( C  .+  D
) )  .+  (
( invg `  G ) `  B
) )  e.  Y  <->  ( ( ( invg `  G ) `  B
)  .+  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )  e.  Y ) )
5747, 55, 31, 56syl3anc 1219 . . . . 5  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( ( ( invg `  G ) `  A
)  .+  ( C  .+  D ) )  .+  ( ( invg `  G ) `  B
) )  e.  Y  <->  ( ( ( invg `  G ) `  B
)  .+  ( (
( invg `  G ) `  A
)  .+  ( C  .+  D ) ) )  e.  Y ) )
5853, 57mpbid 210 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 B )  .+  ( ( ( invg `  G ) `
 A )  .+  ( C  .+  D ) ) )  e.  Y
)
5936, 58eqeltrd 2540 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( ( invg `  G ) `
 ( A  .+  B ) )  .+  ( C  .+  D ) )  e.  Y )
606, 9, 10, 11eqgval 15844 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( ( A  .+  B )  .~  ( C  .+  D )  <->  ( ( A  .+  B )  e.  X  /\  ( C 
.+  D )  e.  X  /\  ( ( ( invg `  G ) `  ( A  .+  B ) ) 
.+  ( C  .+  D ) )  e.  Y ) ) )
614, 8, 60syl2anc 661 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( ( A  .+  B )  .~  ( C  .+  D )  <->  ( ( A  .+  B )  e.  X  /\  ( C 
.+  D )  e.  X  /\  ( ( ( invg `  G ) `  ( A  .+  B ) ) 
.+  ( C  .+  D ) )  e.  Y ) ) )
6222, 26, 59, 61mpbir3and 1171 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( A  .~  C  /\  B  .~  D ) )  -> 
( A  .+  B
)  .~  ( C  .+  D ) )
6362ex 434 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3431   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   Basecbs 14287   +g cplusg 14352   Grpcgrp 15524   invgcminusg 15525  SubGrpcsubg 15789  NrmSGrpcnsg 15790   ~QG cqg 15791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-recs 6937  df-rdg 6971  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-2 10486  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-0g 14494  df-mnd 15529  df-grp 15659  df-minusg 15660  df-subg 15792  df-nsg 15793  df-eqg 15794
This theorem is referenced by:  divsgrp  15850  divsadd  15852  divs1  17435
  Copyright terms: Public domain W3C validator