MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2f Structured version   Unicode version

Theorem eqfnfv2f 5995
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5991 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1  |-  F/_ x F
eqfnfv2f.2  |-  F/_ x G
Assertion
Ref Expression
eqfnfv2f  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem eqfnfv2f
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 5991 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
2 eqfnfv2f.1 . . . . 5  |-  F/_ x F
3 nfcv 2591 . . . . 5  |-  F/_ x
z
42, 3nffv 5888 . . . 4  |-  F/_ x
( F `  z
)
5 eqfnfv2f.2 . . . . 5  |-  F/_ x G
65, 3nffv 5888 . . . 4  |-  F/_ x
( G `  z
)
74, 6nfeq 2602 . . 3  |-  F/ x
( F `  z
)  =  ( G `
 z )
8 nfv 1754 . . 3  |-  F/ z ( F `  x
)  =  ( G `
 x )
9 fveq2 5881 . . . 4  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
10 fveq2 5881 . . . 4  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
119, 10eqeq12d 2451 . . 3  |-  ( z  =  x  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  x )  =  ( G `  x ) ) )
127, 8, 11cbvral 3058 . 2  |-  ( A. z  e.  A  ( F `  z )  =  ( G `  z )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
131, 12syl6bb 264 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   F/_wnfc 2577   A.wral 2782    Fn wfn 5596   ` cfv 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-fv 5609
This theorem is referenced by:  aacllem  39301
  Copyright terms: Public domain W3C validator