MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeelen Structured version   Unicode version

Theorem eqeelen 23153
Description: Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
eqeelen  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  0 ) )
Distinct variable groups:    i, N    A, i    B, i

Proof of Theorem eqeelen
StepHypRef Expression
1 fveere 23150 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
21adantlr 714 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
3 fveere 23150 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
43adantll 713 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  RR )
52, 4resubcld 9779 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  RR )
65recnd 9415 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  CC )
7 sqeq0 11933 . . . . 5  |-  ( ( ( A `  i
)  -  ( B `
 i ) )  e.  CC  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( ( A `  i )  -  ( B `  i ) )  =  0 ) )
86, 7syl 16 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( ( A `  i )  -  ( B `  i ) )  =  0 ) )
92recnd 9415 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  CC )
104recnd 9415 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
119, 10subeq0ad 9732 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
)  =  0  <->  ( A `  i )  =  ( B `  i ) ) )
128, 11bitrd 253 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( A `  i )  =  ( B `  i ) ) )
1312ralbidva 2734 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A. i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
14 fzfid 11798 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1 ... N
)  e.  Fin )
155resqcld 12037 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
165sqge0d 12038 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  0  <_  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
1714, 15, 16fsum00 13264 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  A. i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0 ) )
18 eqeefv 23152 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
1913, 17, 183bitr4rd 286 1  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   ` cfv 5421  (class class class)co 6094   CCcc 9283   RRcr 9284   0cc0 9285   1c1 9286    - cmin 9598   2c2 10374   ...cfz 11440   ^cexp 11868   sum_csu 13166   EEcee 23137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-map 7219  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-sup 7694  df-oi 7727  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-rp 10995  df-ico 11309  df-fz 11441  df-fzo 11552  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-sum 13167  df-ee 23140
This theorem is referenced by:  axsegconlem6  23171  ax5seglem5  23182
  Copyright terms: Public domain W3C validator