MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeelen Structured version   Unicode version

Theorem eqeelen 24611
Description: Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
eqeelen  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  0 ) )
Distinct variable groups:    i, N    A, i    B, i

Proof of Theorem eqeelen
StepHypRef Expression
1 fveere 24608 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
21adantlr 713 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
3 fveere 24608 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
43adantll 712 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  RR )
52, 4resubcld 10027 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  RR )
65recnd 9651 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  CC )
7 sqeq0 12275 . . . . 5  |-  ( ( ( A `  i
)  -  ( B `
 i ) )  e.  CC  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( ( A `  i )  -  ( B `  i ) )  =  0 ) )
86, 7syl 17 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( ( A `  i )  -  ( B `  i ) )  =  0 ) )
92recnd 9651 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  CC )
104recnd 9651 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
119, 10subeq0ad 9976 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
)  =  0  <->  ( A `  i )  =  ( B `  i ) ) )
128, 11bitrd 253 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( A `  i )  =  ( B `  i ) ) )
1312ralbidva 2839 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A. i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
14 fzfid 12122 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1 ... N
)  e.  Fin )
155resqcld 12378 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
165sqge0d 12379 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  0  <_  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
1714, 15, 16fsum00 13761 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  A. i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0 ) )
18 eqeefv 24610 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
1913, 17, 183bitr4rd 286 1  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   ` cfv 5568  (class class class)co 6277   CCcc 9519   RRcr 9520   0cc0 9521   1c1 9522    - cmin 9840   2c2 10625   ...cfz 11724   ^cexp 12208   sum_csu 13655   EEcee 24595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-sup 7934  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-rp 11265  df-ico 11587  df-fz 11725  df-fzo 11853  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-sum 13656  df-ee 24598
This theorem is referenced by:  axsegconlem6  24629  ax5seglem5  24640
  Copyright terms: Public domain W3C validator