MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrriv Structured version   Unicode version

Theorem eqbrriv 5033
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Hypotheses
Ref Expression
eqbrriv.1  |-  Rel  A
eqbrriv.2  |-  Rel  B
eqbrriv.3  |-  ( x A y  <->  x B
y )
Assertion
Ref Expression
eqbrriv  |-  A  =  B
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem eqbrriv
StepHypRef Expression
1 eqbrriv.1 . 2  |-  Rel  A
2 eqbrriv.2 . 2  |-  Rel  B
3 eqbrriv.3 . . 3  |-  ( x A y  <->  x B
y )
4 df-br 4391 . . 3  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
5 df-br 4391 . . 3  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
63, 4, 53bitr3i 275 . 2  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
71, 2, 6eqrelriiv 5032 1  |-  A  =  B
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1370    e. wcel 1758   <.cop 3981   class class class wbr 4390   Rel wrel 4943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-v 3070  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-br 4391  df-opab 4449  df-xp 4944  df-rel 4945
This theorem is referenced by:  resco  5440  tpostpos  6865  sbthcl  7533  dfle2  11225  dflt2  11226  idsset  28055  dfbigcup2  28064  imageval  28095
  Copyright terms: Public domain W3C validator