Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdv Structured version   Visualization version   Unicode version

Theorem eqbrrdv 4931
 Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
eqbrrdv.1
eqbrrdv.2
eqbrrdv.3
Assertion
Ref Expression
eqbrrdv
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem eqbrrdv
StepHypRef Expression
1 eqbrrdv.3 . . . 4
2 df-br 4402 . . . 4
3 df-br 4402 . . . 4
41, 2, 33bitr3g 291 . . 3
54alrimivv 1773 . 2
6 eqbrrdv.1 . . 3
7 eqbrrdv.2 . . 3
8 eqrel 4923 . . 3
96, 7, 8syl2anc 666 . 2
105, 9mpbird 236 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 188  wal 1441   wceq 1443   wcel 1886  cop 3973   class class class wbr 4401   wrel 4838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-br 4402  df-opab 4461  df-xp 4839  df-rel 4840 This theorem is referenced by:  eqbrrdva  5003  oppcsect2  15677
 Copyright terms: Public domain W3C validator