Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdiv Structured version   Unicode version

Theorem eqbrrdiv 5107
 Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqbrrdiv.1
eqbrrdiv.2
eqbrrdiv.3
Assertion
Ref Expression
eqbrrdiv
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem eqbrrdiv
StepHypRef Expression
1 eqbrrdiv.1 . 2
2 eqbrrdiv.2 . 2
3 eqbrrdiv.3 . . 3
4 df-br 4454 . . 3
5 df-br 4454 . . 3
63, 4, 53bitr3g 287 . 2
71, 2, 6eqrelrdv 5105 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wceq 1379   wcel 1767  cop 4039   class class class wbr 4453   wrel 5010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-xp 5011  df-rel 5012 This theorem is referenced by:  funcpropd  15144  fullpropd  15164  fthpropd  15165  dvres  22183
 Copyright terms: Public domain W3C validator