MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrrdiv Structured version   Unicode version

Theorem eqbrrdiv 5049
Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Hypotheses
Ref Expression
eqbrrdiv.1  |-  Rel  A
eqbrrdiv.2  |-  Rel  B
eqbrrdiv.3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
Assertion
Ref Expression
eqbrrdiv  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A    x, B, y    ph, x, y

Proof of Theorem eqbrrdiv
StepHypRef Expression
1 eqbrrdiv.1 . 2  |-  Rel  A
2 eqbrrdiv.2 . 2  |-  Rel  B
3 eqbrrdiv.3 . . 3  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
4 df-br 4404 . . 3  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
5 df-br 4404 . . 3  |-  ( x B y  <->  <. x ,  y >.  e.  B
)
63, 4, 53bitr3g 287 . 2  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  B
) )
71, 2, 6eqrelrdv 5047 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   <.cop 3994   class class class wbr 4403   Rel wrel 4956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-xp 4957  df-rel 4958
This theorem is referenced by:  funcpropd  14933  fullpropd  14953  fthpropd  14954  dvres  21529
  Copyright terms: Public domain W3C validator