Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Unicode version

Theorem eq0rabdioph 35339
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  e.  (Dioph `  N ) )
Distinct variable group:    t, N
Allowed substitution hint:    A( t)

Proof of Theorem eq0rabdioph
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1754 . . . . . . . 8  |-  F/ t  N  e.  NN0
2 nfmpt1 4515 . . . . . . . . 9  |-  F/_ t
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )
32nfel1 2607 . . . . . . . 8  |-  F/ t ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )
41, 3nfan 1986 . . . . . . 7  |-  F/ t ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )
5 zex 10946 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
6 nn0ssz 10958 . . . . . . . . . . . . . 14  |-  NN0  C_  ZZ
7 mapss 7522 . . . . . . . . . . . . . 14  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  ( 1 ... N ) )  C_  ( ZZ  ^m  (
1 ... N ) ) )
85, 6, 7mp2an 676 . . . . . . . . . . . . 13  |-  ( NN0 
^m  ( 1 ... N ) )  C_  ( ZZ  ^m  (
1 ... N ) )
98sseli 3466 . . . . . . . . . . . 12  |-  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  ->  t  e.  ( ZZ  ^m  (
1 ... N ) ) )
109adantl 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
t  e.  ( ZZ 
^m  ( 1 ... N ) ) )
11 mzpf 35298 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ )
12 mptfcl 35282 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ 
->  ( t  e.  ( ZZ  ^m  ( 1 ... N ) )  ->  A  e.  ZZ ) )
1312imp 430 . . . . . . . . . . . . 13  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) : ( ZZ  ^m  ( 1 ... N ) ) --> ZZ  /\  t  e.  ( ZZ  ^m  (
1 ... N ) ) )  ->  A  e.  ZZ )
1411, 9, 13syl2an 479 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  t  e.  ( NN0  ^m  (
1 ... N ) ) )  ->  A  e.  ZZ )
1514adantll 718 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  A  e.  ZZ )
16 eqid 2429 . . . . . . . . . . . 12  |-  ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A )  =  ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )
1716fvmpt2 5973 . . . . . . . . . . 11  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  /\  A  e.  ZZ )  ->  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  A )
1810, 15, 17syl2anc 665 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  A )
1918eqcomd 2437 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  A  =  ( (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  t ) )
2019eqeq1d 2431 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( A  =  0  <-> 
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  0 ) )
2120ex 435 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  ->  ( A  =  0  <->  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 t )  =  0 ) ) )
224, 21ralrimi 2832 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  A. t  e.  ( NN0  ^m  ( 1 ... N ) ) ( A  =  0  <->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 ) )
23 rabbi 3014 . . . . . 6  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  =  0  <->  ( (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  t )  =  0 )  <->  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  A  =  0 }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 } )
2422, 23sylib 199 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 } )
25 nfcv 2591 . . . . . 6  |-  F/_ t
( NN0  ^m  (
1 ... N ) )
26 nfcv 2591 . . . . . 6  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
27 nfv 1754 . . . . . 6  |-  F/ a ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  0
28 nffvmpt1 5889 . . . . . . 7  |-  F/_ t
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  a
)
2928nfeq1 2606 . . . . . 6  |-  F/ t ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  a
)  =  0
30 fveq2 5881 . . . . . . 7  |-  ( t  =  a  ->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  a ) )
3130eqeq1d 2431 . . . . . 6  |-  ( t  =  a  ->  (
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  0  <->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 ) )
3225, 26, 27, 29, 31cbvrab 3085 . . . . 5  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 }  =  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 }
3324, 32syl6eq 2486 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 } )
34 df-rab 2791 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 }  =  { a  |  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) }
3533, 34syl6eq 2486 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) } )
36 elmapi 7501 . . . . . . . . . 10  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  b : ( 1 ... N ) --> NN0 )
37 ffn 5746 . . . . . . . . . 10  |-  ( b : ( 1 ... N ) --> NN0  ->  b  Fn  ( 1 ... N ) )
38 fnresdm 5703 . . . . . . . . . 10  |-  ( b  Fn  ( 1 ... N )  ->  (
b  |`  ( 1 ... N ) )  =  b )
3936, 37, 383syl 18 . . . . . . . . 9  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
b  |`  ( 1 ... N ) )  =  b )
4039eqeq2d 2443 . . . . . . . 8  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  b ) )
41 equcom 1846 . . . . . . . 8  |-  ( a  =  b  <->  b  =  a )
4240, 41syl6bb 264 . . . . . . 7  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  b  =  a ) )
4342anbi1d 709 . . . . . 6  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  =  ( b  |`  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 b )  =  0 )  <->  ( b  =  a  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) ) )
4443rexbiia 2933 . . . . 5  |-  ( E. b  e.  ( NN0 
^m  ( 1 ... N ) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 )  <->  E. b  e.  ( NN0  ^m  ( 1 ... N ) ) ( b  =  a  /\  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  b
)  =  0 ) )
45 fveq2 5881 . . . . . . 7  |-  ( b  =  a  ->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  a ) )
4645eqeq1d 2431 . . . . . 6  |-  ( b  =  a  ->  (
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  b
)  =  0  <->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 ) )
4746ceqsrexbv 3212 . . . . 5  |-  ( E. b  e.  ( NN0 
^m  ( 1 ... N ) ) ( b  =  a  /\  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  b
)  =  0 )  <-> 
( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) )
4844, 47bitr2i 253 . . . 4  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  a
)  =  0 )  <->  E. b  e.  ( NN0  ^m  ( 1 ... N ) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) )
4948abbii 2563 . . 3  |-  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... N
) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) }
5035, 49syl6eq 2486 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { a  |  E. b  e.  ( NN0  ^m  (
1 ... N ) ) ( a  =  ( b  |`  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 b )  =  0 ) } )
51 simpl 458 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
52 nn0z 10960 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
53 uzid 11173 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
5452, 53syl 17 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
5554adantr 466 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  ( ZZ>= `  N ) )
56 simpr 462 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )
57 eldioph 35320 . . 3  |-  ( ( N  e.  NN0  /\  N  e.  ( ZZ>= `  N )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... N
) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) }  e.  (Dioph `  N ) )
5851, 55, 56, 57syl3anc 1264 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... N
) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) }  e.  (Dioph `  N ) )
5950, 58eqeltrd 2517 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   {cab 2414   A.wral 2782   E.wrex 2783   {crab 2786   _Vcvv 3087    C_ wss 3442    |-> cmpt 4484    |` cres 4856    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305    ^m cmap 7480   0cc0 9538   1c1 9539   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11782  mzPolycmzp 35284  Diophcdioph 35317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-mzpcl 35285  df-mzp 35286  df-dioph 35318
This theorem is referenced by:  eqrabdioph  35340  0dioph  35341  vdioph  35342  rmydioph  35590  expdioph  35599
  Copyright terms: Public domain W3C validator