MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epr Structured version   Unicode version

Theorem epr 13502
Description: Euler's constant  _e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.)
Assertion
Ref Expression
epr  |-  _e  e.  RR+

Proof of Theorem epr
StepHypRef Expression
1 ere 13386 . 2  |-  _e  e.  RR
2 epos 13501 . 2  |-  0  <  _e
31, 2elrpii 11006 1  |-  _e  e.  RR+
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1756   RR+crp 11003   _eceu 13360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-n0 10592  df-z 10659  df-uz 10874  df-q 10966  df-rp 11004  df-ico 11318  df-fz 11450  df-fzo 11561  df-fl 11654  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-sum 13176  df-ef 13365  df-e 13366
This theorem is referenced by:  loge  22047  cxploglim2  22384  harmonicbnd3  22413  chebbnd1lem3  22732  chebbnd1  22733  mulog2sumlem1  22795  mulog2sumlem2  22796  selberg3lem1  22818  pntpbnd1a  22846  pntpbnd2  22848  pntlemk  22867  subfacval3  27089  stirlinglem2  29882  stirlinglem4  29884  stirlinglem13  29893  stirlinglem14  29894  stirlinglem15  29895  stirlingr  29897
  Copyright terms: Public domain W3C validator