MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entric Structured version   Unicode version

Theorem entric 8944
Description: Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.)
Assertion
Ref Expression
entric  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<  B  \/  A  ~~  B  \/  B  ~<  A ) )

Proof of Theorem entric
StepHypRef Expression
1 domtri 8943 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
21biimprd 223 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  B  ~<  A  ->  A  ~<_  B ) )
3 brdom2 7557 . . . . 5  |-  ( A  ~<_  B  <->  ( A  ~<  B  \/  A  ~~  B
) )
42, 3syl6ib 226 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  B  ~<  A  ->  ( A  ~<  B  \/  A  ~~  B
) ) )
54con1d 124 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( -.  ( A 
~<  B  \/  A  ~~  B )  ->  B  ~<  A ) )
65orrd 378 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ~<  B  \/  A  ~~  B
)  \/  B  ~<  A ) )
7 df-3or 974 . 2  |-  ( ( A  ~<  B  \/  A  ~~  B  \/  B  ~<  A )  <->  ( ( A  ~<  B  \/  A  ~~  B )  \/  B  ~<  A ) )
86, 7sylibr 212 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<  B  \/  A  ~~  B  \/  B  ~<  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    \/ w3o 972    e. wcel 1767   class class class wbr 4453    ~~ cen 7525    ~<_ cdom 7526    ~< csdm 7527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-ac2 8855
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-recs 7054  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-card 8332  df-ac 8509
This theorem is referenced by:  entri2  8945
  Copyright terms: Public domain W3C validator