MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrer Unicode version

Theorem enrer 8899
Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.)
Assertion
Ref Expression
enrer  |-  ~R  Er  ( P.  X.  P. )

Proof of Theorem enrer
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enr 8890 . 2  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
2 addcompr 8854 . 2  |-  ( x  +P.  y )  =  ( y  +P.  x
)
3 addclpr 8851 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  e.  P. )
4 addasspr 8855 . 2  |-  ( ( x  +P.  y )  +P.  z )  =  ( x  +P.  (
y  +P.  z )
)
5 addcanpr 8879 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  y )  =  ( x  +P.  z )  ->  y  =  z ) )
61, 2, 3, 4, 5ecopover 6967 1  |-  ~R  Er  ( P.  X.  P. )
Colors of variables: wff set class
Syntax hints:    X. cxp 4835    Er wer 6861   P.cnp 8690    +P. cpp 8692    ~R cer 8697
This theorem is referenced by:  enreceq  8900  addsrpr  8906  mulsrpr  8907  ltsrpr  8908  0nsr  8910  axcnex  8978  wuncn  9001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-mq 8748  df-1nq 8749  df-rq 8750  df-ltnq 8751  df-np 8814  df-plp 8816  df-ltp 8818  df-enr 8890
  Copyright terms: Public domain W3C validator