MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enreceq Unicode version

Theorem enreceq 8900
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enreceq  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )

Proof of Theorem enreceq
StepHypRef Expression
1 enrer 8899 . . . 4  |-  ~R  Er  ( P.  X.  P. )
21a1i 11 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ~R  Er  ( P.  X.  P. ) )
3 opelxpi 4869 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
43adantr 452 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  <. A ,  B >.  e.  ( P. 
X.  P. ) )
52, 4erth 6908 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <->  [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
6 enrbreq 8898 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
75, 6bitr3d 247 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   <.cop 3777   class class class wbr 4172    X. cxp 4835  (class class class)co 6040    Er wer 6861   [cec 6862   P.cnp 8690    +P. cpp 8692    ~R cer 8697
This theorem is referenced by:  ltsrpr  8908  m1p1sr  8923  m1m1sr  8924  ltsosr  8925  0idsr  8928  1idsr  8929  00sr  8930  recexsrlem  8934  map2psrpr  8941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-mq 8748  df-1nq 8749  df-rq 8750  df-ltnq 8751  df-np 8814  df-plp 8816  df-ltp 8818  df-enr 8890
  Copyright terms: Public domain W3C validator