MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enreceq Structured version   Unicode version

Theorem enreceq 9251
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enreceq  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )

Proof of Theorem enreceq
StepHypRef Expression
1 enrer 9250 . . . 4  |-  ~R  Er  ( P.  X.  P. )
21a1i 11 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ~R  Er  ( P.  X.  P. ) )
3 opelxpi 4886 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. A ,  B >.  e.  ( P.  X.  P. ) )
43adantr 465 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  <. A ,  B >.  e.  ( P. 
X.  P. ) )
52, 4erth 7160 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <->  [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ]  ~R  ) )
6 enrbreq 9249 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
75, 6bitr3d 255 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   <.cop 3898   class class class wbr 4307    X. cxp 4853  (class class class)co 6106    Er wer 7113   [cec 7114   P.cnp 9041    +P. cpp 9043    ~R cer 9048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-omul 6940  df-er 7116  df-ec 7118  df-ni 9056  df-pli 9057  df-mi 9058  df-lti 9059  df-plpq 9092  df-mpq 9093  df-ltpq 9094  df-enq 9095  df-nq 9096  df-erq 9097  df-plq 9098  df-mq 9099  df-1nq 9100  df-rq 9101  df-ltnq 9102  df-np 9165  df-plp 9167  df-ltp 9169  df-enr 9241
This theorem is referenced by:  ltsrpr  9259  m1p1sr  9274  m1m1sr  9275  ltsosr  9276  0idsr  9279  1idsr  9280  00sr  9281  recexsrlem  9285  map2psrpr  9292
  Copyright terms: Public domain W3C validator