MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Unicode version

Theorem enp1i 7661
Description: Proof induction for en2i 7460 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
enp1i.1  |-  M  e. 
om
enp1i.2  |-  N  =  suc  M
enp1i.3  |-  ( ( A  \  { x } )  ~~  M  ->  ph )
enp1i.4  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
enp1i  |-  ( A 
~~  N  ->  E. x ps )
Distinct variable groups:    x, A    x, N
Allowed substitution hints:    ph( x)    ps( x)    M( x)

Proof of Theorem enp1i
StepHypRef Expression
1 nsuceq0 4910 . . . . 5  |-  suc  M  =/=  (/)
2 breq1 4406 . . . . . . 7  |-  ( A  =  (/)  ->  ( A 
~~  N  <->  (/)  ~~  N
) )
3 enp1i.2 . . . . . . . 8  |-  N  =  suc  M
4 ensym 7471 . . . . . . . . 9  |-  ( (/)  ~~  N  ->  N  ~~  (/) )
5 en0 7485 . . . . . . . . 9  |-  ( N 
~~  (/)  <->  N  =  (/) )
64, 5sylib 196 . . . . . . . 8  |-  ( (/)  ~~  N  ->  N  =  (/) )
73, 6syl5eqr 2509 . . . . . . 7  |-  ( (/)  ~~  N  ->  suc  M  =  (/) )
82, 7syl6bi 228 . . . . . 6  |-  ( A  =  (/)  ->  ( A 
~~  N  ->  suc  M  =  (/) ) )
98necon3ad 2662 . . . . 5  |-  ( A  =  (/)  ->  ( suc 
M  =/=  (/)  ->  -.  A  ~~  N ) )
101, 9mpi 17 . . . 4  |-  ( A  =  (/)  ->  -.  A  ~~  N )
1110con2i 120 . . 3  |-  ( A 
~~  N  ->  -.  A  =  (/) )
12 neq0 3758 . . 3  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
1311, 12sylib 196 . 2  |-  ( A 
~~  N  ->  E. x  x  e.  A )
143breq2i 4411 . . . . 5  |-  ( A 
~~  N  <->  A  ~~  suc  M )
15 enp1i.1 . . . . . . . 8  |-  M  e. 
om
16 dif1en 7659 . . . . . . . 8  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  x  e.  A )  ->  ( A  \  {
x } )  ~~  M )
1715, 16mp3an1 1302 . . . . . . 7  |-  ( ( A  ~~  suc  M  /\  x  e.  A
)  ->  ( A  \  { x } ) 
~~  M )
18 enp1i.3 . . . . . . 7  |-  ( ( A  \  { x } )  ~~  M  ->  ph )
1917, 18syl 16 . . . . . 6  |-  ( ( A  ~~  suc  M  /\  x  e.  A
)  ->  ph )
2019ex 434 . . . . 5  |-  ( A 
~~  suc  M  ->  ( x  e.  A  ->  ph ) )
2114, 20sylbi 195 . . . 4  |-  ( A 
~~  N  ->  (
x  e.  A  ->  ph ) )
22 enp1i.4 . . . 4  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
2321, 22sylcom 29 . . 3  |-  ( A 
~~  N  ->  (
x  e.  A  ->  ps ) )
2423eximdv 1677 . 2  |-  ( A 
~~  N  ->  ( E. x  x  e.  A  ->  E. x ps )
)
2513, 24mpd 15 1  |-  ( A 
~~  N  ->  E. x ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648    \ cdif 3436   (/)c0 3748   {csn 3988   class class class wbr 4403   suc csuc 4832   omcom 6589    ~~ cen 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-om 6590  df-1o 7033  df-er 7214  df-en 7424  df-fin 7427
This theorem is referenced by:  en2  7662  en3  7663  en4  7664
  Copyright terms: Public domain W3C validator