MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Unicode version

Theorem enp1i 7539
Description: Proof induction for en2i 7339 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
enp1i.1  |-  M  e. 
om
enp1i.2  |-  N  =  suc  M
enp1i.3  |-  ( ( A  \  { x } )  ~~  M  ->  ph )
enp1i.4  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
enp1i  |-  ( A 
~~  N  ->  E. x ps )
Distinct variable groups:    x, A    x, N
Allowed substitution hints:    ph( x)    ps( x)    M( x)

Proof of Theorem enp1i
StepHypRef Expression
1 nsuceq0 4794 . . . . 5  |-  suc  M  =/=  (/)
2 breq1 4290 . . . . . . 7  |-  ( A  =  (/)  ->  ( A 
~~  N  <->  (/)  ~~  N
) )
3 enp1i.2 . . . . . . . 8  |-  N  =  suc  M
4 ensym 7350 . . . . . . . . 9  |-  ( (/)  ~~  N  ->  N  ~~  (/) )
5 en0 7364 . . . . . . . . 9  |-  ( N 
~~  (/)  <->  N  =  (/) )
64, 5sylib 196 . . . . . . . 8  |-  ( (/)  ~~  N  ->  N  =  (/) )
73, 6syl5eqr 2484 . . . . . . 7  |-  ( (/)  ~~  N  ->  suc  M  =  (/) )
82, 7syl6bi 228 . . . . . 6  |-  ( A  =  (/)  ->  ( A 
~~  N  ->  suc  M  =  (/) ) )
98necon3ad 2639 . . . . 5  |-  ( A  =  (/)  ->  ( suc 
M  =/=  (/)  ->  -.  A  ~~  N ) )
101, 9mpi 17 . . . 4  |-  ( A  =  (/)  ->  -.  A  ~~  N )
1110con2i 120 . . 3  |-  ( A 
~~  N  ->  -.  A  =  (/) )
12 neq0 3642 . . 3  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
1311, 12sylib 196 . 2  |-  ( A 
~~  N  ->  E. x  x  e.  A )
143breq2i 4295 . . . . 5  |-  ( A 
~~  N  <->  A  ~~  suc  M )
15 enp1i.1 . . . . . . . 8  |-  M  e. 
om
16 dif1en 7537 . . . . . . . 8  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  x  e.  A )  ->  ( A  \  {
x } )  ~~  M )
1715, 16mp3an1 1301 . . . . . . 7  |-  ( ( A  ~~  suc  M  /\  x  e.  A
)  ->  ( A  \  { x } ) 
~~  M )
18 enp1i.3 . . . . . . 7  |-  ( ( A  \  { x } )  ~~  M  ->  ph )
1917, 18syl 16 . . . . . 6  |-  ( ( A  ~~  suc  M  /\  x  e.  A
)  ->  ph )
2019ex 434 . . . . 5  |-  ( A 
~~  suc  M  ->  ( x  e.  A  ->  ph ) )
2114, 20sylbi 195 . . . 4  |-  ( A 
~~  N  ->  (
x  e.  A  ->  ph ) )
22 enp1i.4 . . . 4  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
2321, 22sylcom 29 . . 3  |-  ( A 
~~  N  ->  (
x  e.  A  ->  ps ) )
2423eximdv 1676 . 2  |-  ( A 
~~  N  ->  ( E. x  x  e.  A  ->  E. x ps )
)
2513, 24mpd 15 1  |-  ( A 
~~  N  ->  E. x ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601    \ cdif 3320   (/)c0 3632   {csn 3872   class class class wbr 4287   suc csuc 4716   omcom 6471    ~~ cen 7299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-om 6472  df-1o 6912  df-er 7093  df-en 7303  df-fin 7306
This theorem is referenced by:  en2  7540  en3  7541  en4  7542
  Copyright terms: Public domain W3C validator