MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   Unicode version

Theorem enfin1ai 8814
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai  |-  ( A 
~~  B  ->  ( A  e. FinIa  ->  B  e. FinIa ) )

Proof of Theorem enfin1ai
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 7618 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
2 bren 7578 . . 3  |-  ( B 
~~  A  <->  E. f 
f : B -1-1-onto-> A )
31, 2sylib 200 . 2  |-  ( A 
~~  B  ->  E. f 
f : B -1-1-onto-> A )
4 elpwi 3960 . . . . . . 7  |-  ( x  e.  ~P B  ->  x  C_  B )
5 simplr 762 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  A  e. FinIa )
6 imassrn 5179 . . . . . . . . . 10  |-  ( f
" x )  C_  ran  f
7 f1of 5814 . . . . . . . . . . . 12  |-  ( f : B -1-1-onto-> A  ->  f : B
--> A )
87ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
f : B --> A )
9 frn 5735 . . . . . . . . . . 11  |-  ( f : B --> A  ->  ran  f  C_  A )
108, 9syl 17 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  ran  f  C_  A )
116, 10syl5ss 3443 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " x
)  C_  A )
12 fin1ai 8723 . . . . . . . . 9  |-  ( ( A  e. FinIa  /\  ( f " x )  C_  A )  ->  (
( f " x
)  e.  Fin  \/  ( A  \  (
f " x ) )  e.  Fin )
)
135, 11, 12syl2anc 667 . . . . . . . 8  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f "
x )  e.  Fin  \/  ( A  \  (
f " x ) )  e.  Fin )
)
14 f1of1 5813 . . . . . . . . . . . 12  |-  ( f : B -1-1-onto-> A  ->  f : B -1-1-> A )
1514ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
f : B -1-1-> A
)
16 simpr 463 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  x  C_  B )
17 vex 3048 . . . . . . . . . . . 12  |-  x  e. 
_V
1817a1i 11 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  x  e.  _V )
19 f1imaeng 7629 . . . . . . . . . . 11  |-  ( ( f : B -1-1-> A  /\  x  C_  B  /\  x  e.  _V )  ->  ( f " x
)  ~~  x )
2015, 16, 18, 19syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " x
)  ~~  x )
21 enfi 7788 . . . . . . . . . 10  |-  ( ( f " x ) 
~~  x  ->  (
( f " x
)  e.  Fin  <->  x  e.  Fin ) )
2220, 21syl 17 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f "
x )  e.  Fin  <->  x  e.  Fin ) )
23 df-f1 5587 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-> A  <->  ( f : B --> A  /\  Fun  `' f ) )
2423simprbi 466 . . . . . . . . . . . . 13  |-  ( f : B -1-1-> A  ->  Fun  `' f )
25 imadif 5658 . . . . . . . . . . . . 13  |-  ( Fun  `' f  ->  ( f
" ( B  \  x ) )  =  ( ( f " B )  \  (
f " x ) ) )
2615, 24, 253syl 18 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) )  =  ( ( f
" B )  \ 
( f " x
) ) )
27 f1ofo 5821 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  ->  f : B -onto-> A )
28 foima 5798 . . . . . . . . . . . . . . 15  |-  ( f : B -onto-> A  -> 
( f " B
)  =  A )
2927, 28syl 17 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ( f " B )  =  A )
3029ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " B
)  =  A )
3130difeq1d 3550 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f " B )  \  (
f " x ) )  =  ( A 
\  ( f "
x ) ) )
3226, 31eqtrd 2485 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) )  =  ( A  \ 
( f " x
) ) )
33 difssd 3561 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( B  \  x
)  C_  B )
34 vex 3048 . . . . . . . . . . . . . . 15  |-  f  e. 
_V
357adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  f : B --> A )
36 dmfex 6751 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  _V  /\  f : B --> A )  ->  B  e.  _V )
3734, 35, 36sylancr 669 . . . . . . . . . . . . . 14  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  B  e.  _V )
3837adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  B  e.  _V )
39 difexg 4551 . . . . . . . . . . . . 13  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
4038, 39syl 17 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( B  \  x
)  e.  _V )
41 f1imaeng 7629 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-> A  /\  ( B  \  x
)  C_  B  /\  ( B  \  x
)  e.  _V )  ->  ( f " ( B  \  x ) ) 
~~  ( B  \  x ) )
4215, 33, 40, 41syl3anc 1268 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) ) 
~~  ( B  \  x ) )
4332, 42eqbrtrrd 4425 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( A  \  (
f " x ) )  ~~  ( B 
\  x ) )
44 enfi 7788 . . . . . . . . . 10  |-  ( ( A  \  ( f
" x ) ) 
~~  ( B  \  x )  ->  (
( A  \  (
f " x ) )  e.  Fin  <->  ( B  \  x )  e.  Fin ) )
4543, 44syl 17 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( A  \ 
( f " x
) )  e.  Fin  <->  ( B  \  x )  e. 
Fin ) )
4622, 45orbi12d 716 . . . . . . . 8  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( ( f
" x )  e. 
Fin  \/  ( A  \  ( f " x
) )  e.  Fin ) 
<->  ( x  e.  Fin  \/  ( B  \  x
)  e.  Fin )
) )
4713, 46mpbid 214 . . . . . . 7  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( x  e.  Fin  \/  ( B  \  x
)  e.  Fin )
)
484, 47sylan2 477 . . . . . 6  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  e.  ~P B
)  ->  ( x  e.  Fin  \/  ( B 
\  x )  e. 
Fin ) )
4948ralrimiva 2802 . . . . 5  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  A. x  e.  ~P  B ( x  e.  Fin  \/  ( B  \  x )  e. 
Fin ) )
50 isfin1a 8722 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e. FinIa 
<-> 
A. x  e.  ~P  B ( x  e. 
Fin  \/  ( B  \  x )  e.  Fin ) ) )
5137, 50syl 17 . . . . 5  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  ( B  e. FinIa 
<-> 
A. x  e.  ~P  B ( x  e. 
Fin  \/  ( B  \  x )  e.  Fin ) ) )
5249, 51mpbird 236 . . . 4  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  B  e. FinIa
)
5352ex 436 . . 3  |-  ( f : B -1-1-onto-> A  ->  ( A  e. FinIa  ->  B  e. FinIa ) )
5453exlimiv 1776 . 2  |-  ( E. f  f : B -1-1-onto-> A  ->  ( A  e. FinIa  ->  B  e. FinIa
) )
553, 54syl 17 1  |-  ( A 
~~  B  ->  ( A  e. FinIa  ->  B  e. FinIa ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   _Vcvv 3045    \ cdif 3401    C_ wss 3404   ~Pcpw 3951   class class class wbr 4402   `'ccnv 4833   ran crn 4835   "cima 4837   Fun wfun 5576   -->wf 5578   -1-1->wf1 5579   -onto->wfo 5580   -1-1-onto->wf1o 5581    ~~ cen 7566   Fincfn 7569  FinIacfin1a 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-er 7363  df-en 7570  df-fin 7573  df-fin1a 8715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator