Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lplem1VD Structured version   Visualization version   Unicode version

Theorem en3lplem1VD 37302
 Description: Virtual deduction proof of en3lplem1 8137. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lplem1VD
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem en3lplem1VD
StepHypRef Expression
1 idn1 37012 . . . . . . 7
2 simp3 1032 . . . . . . 7
31, 2e1a 37074 . . . . . 6
4 tpid3g 4078 . . . . . 6
53, 4e1a 37074 . . . . 5
6 idn2 37060 . . . . . 6
7 eleq2 2538 . . . . . . 7
87biimprd 231 . . . . . 6
96, 3, 8e21 37180 . . . . 5
10 pm3.2 454 . . . . 5
115, 9, 10e12 37174 . . . 4
12 elex22 3045 . . . 4
1311, 12e2 37078 . . 3
1413in2 37052 . 2
1514in1 37009 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 376   w3a 1007   wceq 1452  wex 1671   wcel 1904  ctp 3963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-v 3033  df-un 3395  df-sn 3960  df-pr 3962  df-tp 3964  df-vd1 37008  df-vd2 37016 This theorem is referenced by:  en3lplem2VD  37303
 Copyright terms: Public domain W3C validator