Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lplem1VD Structured version   Unicode version

Theorem en3lplem1VD 33744
Description: Virtual deduction proof of en3lplem1 8048. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lplem1VD  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem en3lplem1VD
StepHypRef Expression
1 idn1 33452 . . . . . . 7  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ).
2 simp3 998 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  A )
31, 2e1a 33514 . . . . . 6  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->.  C  e.  A ).
4 tpid3g 4147 . . . . . 6  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
53, 4e1a 33514 . . . . 5  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->.  C  e.  { A ,  B ,  C } ).
6 idn2 33500 . . . . . 6  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ,. x  =  A  ->.  x  =  A ).
7 eleq2 2530 . . . . . . 7  |-  ( x  =  A  ->  ( C  e.  x  <->  C  e.  A ) )
87biimprd 223 . . . . . 6  |-  ( x  =  A  ->  ( C  e.  A  ->  C  e.  x ) )
96, 3, 8e21 33628 . . . . 5  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ,. x  =  A  ->.  C  e.  x ).
10 pm3.2 447 . . . . 5  |-  ( C  e.  { A ,  B ,  C }  ->  ( C  e.  x  ->  ( C  e.  { A ,  B ,  C }  /\  C  e.  x ) ) )
115, 9, 10e12 33622 . . . 4  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ,. x  =  A  ->.  ( C  e.  { A ,  B ,  C }  /\  C  e.  x
) ).
12 elex22 3122 . . . 4  |-  ( ( C  e.  { A ,  B ,  C }  /\  C  e.  x
)  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) )
1311, 12e2 33518 . . 3  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ,. x  =  A  ->.  E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x ) ).
1413in2 33492 . 2  |-  (. ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->.  ( x  =  A  ->  E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x ) ) ).
1514in1 33449 1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   {ctp 4036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3476  df-sn 4033  df-pr 4035  df-tp 4037  df-vd1 33448  df-vd2 33456
This theorem is referenced by:  en3lplem2VD  33745
  Copyright terms: Public domain W3C validator