Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem1 Structured version   Unicode version

Theorem en3lplem1 8067
 Description: Lemma for en3lp 8069. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem1
Distinct variable groups:   ,   ,   ,

Proof of Theorem en3lplem1
StepHypRef Expression
1 simp3 1007 . . 3
2 eleq2 2490 . . 3
31, 2syl5ibrcom 225 . 2
4 tpid3g 4053 . . . . 5
543ad2ant3 1028 . . . 4
6 inelcm 3787 . . . 4
75, 6sylan2 476 . . 3
87expcom 436 . 2
93, 8syld 45 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   w3a 982   wceq 1437   wcel 1872   wne 2594   cin 3373  c0 3699  ctp 3940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-v 3019  df-dif 3377  df-un 3379  df-in 3381  df-nul 3700  df-sn 3937  df-pr 3939  df-tp 3941 This theorem is referenced by:  en3lplem2  8068
 Copyright terms: Public domain W3C validator