MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem1 Structured version   Unicode version

Theorem en3lplem1 8064
Description: Lemma for en3lp 8066. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  ( x  i^i 
{ A ,  B ,  C } )  =/=  (/) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem en3lplem1
StepHypRef Expression
1 simp3 999 . . 3  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  A )
2 eleq2 2475 . . 3  |-  ( x  =  A  ->  ( C  e.  x  <->  C  e.  A ) )
31, 2syl5ibrcom 222 . 2  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  C  e.  x
) )
4 tpid3g 4087 . . . . 5  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
543ad2ant3 1020 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  { A ,  B ,  C }
)
6 inelcm 3824 . . . 4  |-  ( ( C  e.  x  /\  C  e.  { A ,  B ,  C }
)  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )
75, 6sylan2 472 . . 3  |-  ( ( C  e.  x  /\  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) )
87expcom 433 . 2  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( C  e.  x  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) )
93, 8syld 42 1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  ( x  i^i 
{ A ,  B ,  C } )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598    i^i cin 3413   (/)c0 3738   {ctp 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-nul 3739  df-sn 3973  df-pr 3975  df-tp 3977
This theorem is referenced by:  en3lplem2  8065
  Copyright terms: Public domain W3C validator