MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem1 Structured version   Unicode version

Theorem en3lplem1 7935
Description: Lemma for en3lp 7937. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  ( x  i^i 
{ A ,  B ,  C } )  =/=  (/) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem en3lplem1
StepHypRef Expression
1 simp3 990 . . 3  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  A )
2 eleq2 2527 . . 3  |-  ( x  =  A  ->  ( C  e.  x  <->  C  e.  A ) )
31, 2syl5ibrcom 222 . 2  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  C  e.  x
) )
4 tpid3g 4101 . . . . 5  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
543ad2ant3 1011 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  { A ,  B ,  C }
)
6 inelcm 3844 . . . 4  |-  ( ( C  e.  x  /\  C  e.  { A ,  B ,  C }
)  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )
75, 6sylan2 474 . . 3  |-  ( ( C  e.  x  /\  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) )
87expcom 435 . 2  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( C  e.  x  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) )
93, 8syld 44 1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  ( x  i^i 
{ A ,  B ,  C } )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648    i^i cin 3438   (/)c0 3748   {ctp 3992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-nul 3749  df-sn 3989  df-pr 3991  df-tp 3993
This theorem is referenced by:  en3lplem2  7936
  Copyright terms: Public domain W3C validator