Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Structured version   Unicode version

Theorem en3lpVD 33513
Description: Virtual deduction proof of en3lp 8036. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )

Proof of Theorem en3lpVD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 417 . . 3  |-  ( -. 
{ A ,  B ,  C }  =  (/)  \/ 
{ A ,  B ,  C }  =  (/) )
2 df-ne 2640 . . . . 5  |-  ( { A ,  B ,  C }  =/=  (/)  <->  -.  { A ,  B ,  C }  =  (/) )
32bicomi 202 . . . 4  |-  ( -. 
{ A ,  B ,  C }  =  (/)  <->  { A ,  B ,  C }  =/=  (/) )
43orbi1i 520 . . 3  |-  ( ( -.  { A ,  B ,  C }  =  (/)  \/  { A ,  B ,  C }  =  (/) )  <->  ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) ) )
51, 4mpbi 208 . 2  |-  ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) )
6 zfregs2 8167 . . . 4  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  A. x  e.  { A ,  B ,  C } E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x ) )
7 en3lplem2VD 33512 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
87alrimiv 1706 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  A. x ( x  e.  { A ,  B ,  C }  ->  E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) ) )
9 df-ral 2798 . . . . . 6  |-  ( A. x  e.  { A ,  B ,  C } E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x )  <->  A. x
( x  e.  { A ,  B ,  C }  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
108, 9sylibr 212 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  A. x  e.  { A ,  B ,  C } E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) )
1110con3i 135 . . . 4  |-  ( -. 
A. x  e.  { A ,  B ,  C } E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
)
126, 11syl 16 . . 3  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
13 idn1 33219 . . . . . . 7  |-  (. { A ,  B ,  C }  =  (/)  ->.  { A ,  B ,  C }  =  (/) ).
14 noel 3774 . . . . . . 7  |-  -.  C  e.  (/)
15 eleq2 2516 . . . . . . . . 9  |-  ( { A ,  B ,  C }  =  (/)  ->  ( C  e.  { A ,  B ,  C }  <->  C  e.  (/) ) )
1615notbid 294 . . . . . . . 8  |-  ( { A ,  B ,  C }  =  (/)  ->  ( -.  C  e.  { A ,  B ,  C }  <->  -.  C  e.  (/) ) )
1716biimprd 223 . . . . . . 7  |-  ( { A ,  B ,  C }  =  (/)  ->  ( -.  C  e.  (/)  ->  -.  C  e.  { A ,  B ,  C }
) )
1813, 14, 17e10 33348 . . . . . 6  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  C  e.  { A ,  B ,  C } ).
19 tpid3g 4130 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
2019con3i 135 . . . . . 6  |-  ( -.  C  e.  { A ,  B ,  C }  ->  -.  C  e.  A
)
2118, 20e1a 33281 . . . . 5  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  C  e.  A ).
22 simp3 999 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  A )
2322con3i 135 . . . . 5  |-  ( -.  C  e.  A  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
2421, 23e1a 33281 . . . 4  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ).
2524in1 33216 . . 3  |-  ( { A ,  B ,  C }  =  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
2612, 25jaoi 379 . 2  |-  ( ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) )  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
275, 26ax-mp 5 1  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 974   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638   A.wral 2793   (/)c0 3770   {ctp 4018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-reg 8021  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-om 6686  df-recs 7044  df-rdg 7078  df-vd1 33215  df-vd2 33223  df-vd3 33235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator