Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Structured version   Visualization version   Unicode version

Theorem en3lpVD 37241
Description: Virtual deduction proof of en3lp 8121. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )

Proof of Theorem en3lpVD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 419 . . 3  |-  ( -. 
{ A ,  B ,  C }  =  (/)  \/ 
{ A ,  B ,  C }  =  (/) )
2 df-ne 2624 . . . . 5  |-  ( { A ,  B ,  C }  =/=  (/)  <->  -.  { A ,  B ,  C }  =  (/) )
32bicomi 206 . . . 4  |-  ( -. 
{ A ,  B ,  C }  =  (/)  <->  { A ,  B ,  C }  =/=  (/) )
43orbi1i 523 . . 3  |-  ( ( -.  { A ,  B ,  C }  =  (/)  \/  { A ,  B ,  C }  =  (/) )  <->  ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) ) )
51, 4mpbi 212 . 2  |-  ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) )
6 zfregs2 8217 . . . 4  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  A. x  e.  { A ,  B ,  C } E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x ) )
7 en3lplem2VD 37240 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
87alrimiv 1773 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  A. x ( x  e.  { A ,  B ,  C }  ->  E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) ) )
9 df-ral 2742 . . . . . 6  |-  ( A. x  e.  { A ,  B ,  C } E. y ( y  e. 
{ A ,  B ,  C }  /\  y  e.  x )  <->  A. x
( x  e.  { A ,  B ,  C }  ->  E. y
( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
108, 9sylibr 216 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  A. x  e.  { A ,  B ,  C } E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
) )
1110con3i 141 . . . 4  |-  ( -. 
A. x  e.  { A ,  B ,  C } E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x
)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
)
126, 11syl 17 . . 3  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
13 idn1 36944 . . . . . . 7  |-  (. { A ,  B ,  C }  =  (/)  ->.  { A ,  B ,  C }  =  (/) ).
14 noel 3735 . . . . . . 7  |-  -.  C  e.  (/)
15 eleq2 2518 . . . . . . . . 9  |-  ( { A ,  B ,  C }  =  (/)  ->  ( C  e.  { A ,  B ,  C }  <->  C  e.  (/) ) )
1615notbid 296 . . . . . . . 8  |-  ( { A ,  B ,  C }  =  (/)  ->  ( -.  C  e.  { A ,  B ,  C }  <->  -.  C  e.  (/) ) )
1716biimprd 227 . . . . . . 7  |-  ( { A ,  B ,  C }  =  (/)  ->  ( -.  C  e.  (/)  ->  -.  C  e.  { A ,  B ,  C }
) )
1813, 14, 17e10 37073 . . . . . 6  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  C  e.  { A ,  B ,  C } ).
19 tpid3g 4087 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
2019con3i 141 . . . . . 6  |-  ( -.  C  e.  { A ,  B ,  C }  ->  -.  C  e.  A
)
2118, 20e1a 37006 . . . . 5  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  C  e.  A ).
22 simp3 1010 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  C  e.  A )
2322con3i 141 . . . . 5  |-  ( -.  C  e.  A  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
2421, 23e1a 37006 . . . 4  |-  (. { A ,  B ,  C }  =  (/)  ->.  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ).
2524in1 36941 . . 3  |-  ( { A ,  B ,  C }  =  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
2612, 25jaoi 381 . 2  |-  ( ( { A ,  B ,  C }  =/=  (/)  \/  { A ,  B ,  C }  =  (/) )  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
275, 26ax-mp 5 1  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 370    /\ wa 371    /\ w3a 985   A.wal 1442    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   A.wral 2737   (/)c0 3731   {ctp 3972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-reg 8107  ax-inf2 8146
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-om 6693  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-vd1 36940  df-vd2 36948  df-vd3 36960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator