MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lp Structured version   Unicode version

Theorem en3lp 8067
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 37151 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
en3lp  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )

Proof of Theorem en3lp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3701 . . . . 5  |-  -.  C  e.  (/)
2 eleq2 2489 . . . . 5  |-  ( { A ,  B ,  C }  =  (/)  ->  ( C  e.  { A ,  B ,  C }  <->  C  e.  (/) ) )
31, 2mtbiri 304 . . . 4  |-  ( { A ,  B ,  C }  =  (/)  ->  -.  C  e.  { A ,  B ,  C }
)
4 tpid3g 4051 . . . 4  |-  ( C  e.  A  ->  C  e.  { A ,  B ,  C } )
53, 4nsyl 124 . . 3  |-  ( { A ,  B ,  C }  =  (/)  ->  -.  C  e.  A )
65intn3an3d 1376 . 2  |-  ( { A ,  B ,  C }  =  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
7 tpex 6541 . . . 4  |-  { A ,  B ,  C }  e.  _V
87zfreg 8056 . . 3  |-  ( { A ,  B ,  C }  =/=  (/)  ->  E. x  e.  { A ,  B ,  C }  ( x  i^i  { A ,  B ,  C }
)  =  (/) )
9 en3lplem2 8066 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  i^i  { A ,  B ,  C }
)  =/=  (/) ) )
109com12 32 . . . . 5  |-  ( x  e.  { A ,  B ,  C }  ->  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) ) )
1110necon2bd 2611 . . . 4  |-  ( x  e.  { A ,  B ,  C }  ->  ( ( x  i^i 
{ A ,  B ,  C } )  =  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) ) )
1211rexlimiv 2844 . . 3  |-  ( E. x  e.  { A ,  B ,  C } 
( x  i^i  { A ,  B ,  C } )  =  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A ) )
138, 12syl 17 . 2  |-  ( { A ,  B ,  C }  =/=  (/)  ->  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A
) )
146, 13pm2.61ine 2678 1  |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2593   E.wrex 2709    i^i cin 3371   (/)c0 3697   {ctp 3938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pr 4596  ax-un 6534  ax-reg 8053
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-ral 2713  df-rex 2714  df-v 3018  df-dif 3375  df-un 3377  df-in 3379  df-nul 3698  df-sn 3935  df-pr 3937  df-tp 3939  df-uni 4156
This theorem is referenced by:  bj-inftyexpidisj  31553  tratrb  36804  tratrbVD  37168
  Copyright terms: Public domain W3C validator