MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3i Structured version   Unicode version

Theorem en3i 7459
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
Hypotheses
Ref Expression
en3i.1  |-  A  e. 
_V
en3i.2  |-  B  e. 
_V
en3i.3  |-  ( x  e.  A  ->  C  e.  B )
en3i.4  |-  ( y  e.  B  ->  D  e.  A )
en3i.5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
en3i  |-  A  ~~  B
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en3i
StepHypRef Expression
1 en3i.1 . . . 4  |-  A  e. 
_V
21a1i 11 . . 3  |-  ( T. 
->  A  e.  _V )
3 en3i.2 . . . 4  |-  B  e. 
_V
43a1i 11 . . 3  |-  ( T. 
->  B  e.  _V )
5 en3i.3 . . . 4  |-  ( x  e.  A  ->  C  e.  B )
65a1i 11 . . 3  |-  ( T. 
->  ( x  e.  A  ->  C  e.  B ) )
7 en3i.4 . . . 4  |-  ( y  e.  B  ->  D  e.  A )
87a1i 11 . . 3  |-  ( T. 
->  ( y  e.  B  ->  D  e.  A ) )
9 en3i.5 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  =  D  <-> 
y  =  C ) )
109a1i 11 . . 3  |-  ( T. 
->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
112, 4, 6, 8, 10en3d 7457 . 2  |-  ( T. 
->  A  ~~  B )
1211trud 1379 1  |-  A  ~~  B
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   T. wtru 1371    e. wcel 1758   _Vcvv 3078   class class class wbr 4401    ~~ cen 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-en 7422
This theorem is referenced by:  xpmapenlem  7589  nn0ennn  11919
  Copyright terms: Public domain W3C validator