MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Structured version   Unicode version

Theorem en2top 19281
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )

Proof of Theorem en2top
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  J  ~~  2o )
2 toponss 19225 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
32ad2ant2rl 748 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  x  C_  X )
4 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  X  =  (/) )
5 sseq0 3817 . . . . . . . . . . . . . . . . 17  |-  ( ( x  C_  X  /\  X  =  (/) )  ->  x  =  (/) )
63, 4, 5syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  x  =  (/) )
7 elsn 4041 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { (/) }  <->  x  =  (/) )
86, 7sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  ( X  =  (/)  /\  x  e.  J ) )  ->  x  e.  { (/) } )
98expr 615 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  (
x  e.  J  ->  x  e.  { (/) } ) )
109ssrdv 3510 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  C_ 
{ (/) } )
11 topontop 19222 . . . . . . . . . . . . . . . 16  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
12 0opn 19208 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  (/)  e.  J
)
1311, 12syl 16 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  X
)  ->  (/)  e.  J
)
1413ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  (/)  e.  J
)
1514snssd 4172 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  { (/) } 
C_  J )
1610, 15eqssd 3521 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  =  { (/) } )
17 0ex 4577 . . . . . . . . . . . . 13  |-  (/)  e.  _V
1817ensn1 7579 . . . . . . . . . . . 12  |-  { (/) } 
~~  1o
1916, 18syl6eqbr 4484 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  ~~  1o )
2019olcd 393 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  ( J  =  (/)  \/  J  ~~  1o ) )
21 sdom2en01 8682 . . . . . . . . . 10  |-  ( J 
~<  2o  <->  ( J  =  (/)  \/  J  ~~  1o ) )
2220, 21sylibr 212 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  J  ~<  2o )
23 sdomnen 7544 . . . . . . . . 9  |-  ( J 
~<  2o  ->  -.  J  ~~  2o )
2422, 23syl 16 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  /\  X  =  (/) )  ->  -.  J  ~~  2o )
2524ex 434 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( X  =  (/)  ->  -.  J  ~~  2o ) )
2625necon2ad 2680 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( J  ~~  2o  ->  X  =/=  (/) ) )
271, 26mpd 15 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  X  =/=  (/) )
2827necomd 2738 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  (/)  =/=  X
)
2913adantr 465 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  (/)  e.  J
)
30 toponmax 19224 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
3130adantr 465 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  X  e.  J )
32 en2eqpr 8385 . . . . 5  |-  ( ( J  ~~  2o  /\  (/) 
e.  J  /\  X  e.  J )  ->  ( (/) 
=/=  X  ->  J  =  { (/) ,  X }
) )
331, 29, 31, 32syl3anc 1228 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( (/) 
=/=  X  ->  J  =  { (/) ,  X }
) )
3428, 33mpd 15 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  J  =  { (/) ,  X }
)
3534, 27jca 532 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  ~~  2o )  ->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )
36 simprl 755 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  J  =  { (/)
,  X } )
3717a1i 11 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  (/)  e.  _V )
3830adantr 465 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  X  e.  J
)
39 simprr 756 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  X  =/=  (/) )
4039necomd 2738 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  (/)  =/=  X )
41 pr2nelem 8382 . . . 4  |-  ( (
(/)  e.  _V  /\  X  e.  J  /\  (/)  =/=  X
)  ->  { (/) ,  X }  ~~  2o )
4237, 38, 40, 41syl3anc 1228 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  { (/) ,  X }  ~~  2o )
4336, 42eqbrtrd 4467 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )  ->  J  ~~  2o )
4435, 43impbida 830 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    C_ wss 3476   (/)c0 3785   {csn 4027   {cpr 4029   class class class wbr 4447   ` cfv 5588   1oc1o 7123   2oc2o 7124    ~~ cen 7513    ~< csdm 7515   Topctop 19189  TopOnctopon 19190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-1o 7130  df-2o 7131  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-top 19194  df-topon 19197
This theorem is referenced by:  hmphindis  20061
  Copyright terms: Public domain W3C validator