MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2other2 Structured version   Unicode version

Theorem en2other2 8288
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) } )  =  X )

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 8287 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )
2 prcom 4062 . . . . . . 7  |-  { X ,  U. ( P  \  { X } ) }  =  { U. ( P  \  { X }
) ,  X }
31, 2syl6eq 2511 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { U. ( P  \  { X }
) ,  X }
)
43difeq1d 3582 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { U. ( P  \  { X } ) } )  =  ( { U. ( P  \  { X } ) ,  X }  \  { U. ( P  \  { X }
) } ) )
5 difprsnss 4118 . . . . 5  |-  ( { U. ( P  \  { X } ) ,  X }  \  { U. ( P  \  { X } ) } ) 
C_  { X }
64, 5syl6eqss 3515 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { U. ( P  \  { X } ) } ) 
C_  { X }
)
7 simpl 457 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  P )
8 1onn 7189 . . . . . . . . . 10  |-  1o  e.  om
98a1i 11 . . . . . . . . 9  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  1o  e.  om )
10 simpr 461 . . . . . . . . . 10  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  2o )
11 df-2o 7032 . . . . . . . . . 10  |-  2o  =  suc  1o
1210, 11syl6breq 4440 . . . . . . . . 9  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  suc  1o )
13 dif1en 7657 . . . . . . . . 9  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  X  e.  P )  ->  ( P  \  { X } )  ~~  1o )
149, 12, 7, 13syl3anc 1219 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { X } )  ~~  1o )
15 en1uniel 7492 . . . . . . . 8  |-  ( ( P  \  { X } )  ~~  1o  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
16 eldifsni 4110 . . . . . . . 8  |-  ( U. ( P  \  { X } )  e.  ( P  \  { X } )  ->  U. ( P  \  { X }
)  =/=  X )
1714, 15, 163syl 20 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  =/=  X
)
1817necomd 2723 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  =/=  U. ( P 
\  { X }
) )
19 eldifsn 4109 . . . . . 6  |-  ( X  e.  ( P  \  { U. ( P  \  { X } ) } )  <->  ( X  e.  P  /\  X  =/=  U. ( P  \  { X } ) ) )
207, 18, 19sylanbrc 664 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  ( P  \  { U. ( P 
\  { X }
) } ) )
2120snssd 4127 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  { X }  C_  ( P  \  { U. ( P  \  { X }
) } ) )
226, 21eqssd 3482 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { U. ( P  \  { X } ) } )  =  { X }
)
2322unieqd 4210 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) } )  =  U. { X } )
24 unisng 4216 . . 3  |-  ( X  e.  P  ->  U. { X }  =  X
)
2524adantr 465 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. { X }  =  X )
2623, 25eqtrd 2495 1  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { U. ( P  \  { X } ) } )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648    \ cdif 3434   {csn 3986   {cpr 3988   U.cuni 4200   class class class wbr 4401   suc csuc 4830   omcom 6587   1oc1o 7024   2oc2o 7025    ~~ cen 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-om 6588  df-1o 7031  df-2o 7032  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425
This theorem is referenced by:  pmtrfinv  16087
  Copyright terms: Public domain W3C validator